Advertisement for orthosearch.org.uk
Results 1 - 20 of 37
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal migration of the tibial component between the KA+PSI and MA+CAS groups (reaching median maximum total point motion migration at two years of 0.40 mm for the KA+PSI group and 0.37 mm for the MA+CAS group, p = 0.82; p = 0.68 adjusted for age, sex, and body mass index (BMI) for all follow-ups). Both groups had mean migrations below acceptable thresholds. There was no difference in inducible displacement (p = 0.34) or PROMS (p = 0.61 for the Oxford Knee Score) between groups. There was no correlation between alignment and tibial component migration or alignment and inducible displacement. These findings support non-neutral alignment as a viable option with this component, with no evidence that it compromises fixation. Conclusion. Kinematic alignment using patient-specific instrumentation in TKA was associated with acceptable tibial component migration, indicating stable fixation. These results are supportive of future investigations of kinematic alignment. Cite this article: Bone Joint J 2019;101-B:929–940


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 59 - 66
1 Jun 2021
Abhari S Hsing TM Malkani MM Smith AF Smith LS Mont MA Malkani AL

Aims. Alternative alignment concepts, including kinematic and restricted kinematic, have been introduced to help improve clinical outcomes following total knee arthroplasty (TKA). The purpose of this study was to evaluate the clinical results, along with patient satisfaction, following TKA using the concept of restricted kinematic alignment. Methods. A total of 121 consecutive TKAs performed between 11 February 2018 to 11 June 2019 with preoperative varus deformity were reviewed at minimum one-year follow-up. Three knees were excluded due to severe preoperative varus deformity greater than 15°, and a further three due to requiring revision surgery, leaving 109 patients and 115 knees to undergo primary TKA using the concept of restricted kinematic alignment with advanced technology. Patients were stratified into three groups based on the preoperative limb varus deformity: Group A with 1° to 5° varus (43 knees); Group B between 6° and 10° varus (56 knees); and Group C with varus greater than 10° (16 knees). This study group was compared with a matched cohort of 115 TKAs and 115 patients using a neutral mechanical alignment target with manual instruments performed from 24 October 2016 to 14 January 2019. Results. Mean overall patient satisfaction for the entire cohort was 4.7 (SE 0.1) on a 5-point Likert scale, with 93% being either very satisfied or satisfied compared with a Likert of 4.3 and patient satisfaction of 81% in the mechanical alignment group (p < 0.001 and p < 0.006 respectively). At mean follow-up of 17 months (11 to 27), the mean overall Likert, Knee Injury and Osteoarthritis Outcome Score for Joint Replacement, Western Ontario and McMaster Universities Osteoarthritis Index, Forgotten Joint Score, and Knee Society Knee and Function Scores were significantly better in the kinematic group than in the neutral mechanical alignment group. The most common complication in both groups was contracture requiring manipulation under anaesthesia, involving seven knees (6.1%) in the kinematic group and nine knees (7.8%) in the mechanical alignment group. Conclusion. With the advent of advanced technology, and the ability to obtain accurate bone cuts, the target limb alignment, and soft-tissue balance within millimetres, using a restricted kinematic alignment concept demonstrated excellent patient satisfaction following primary TKA. Longer-term analysis is required as to the durability of this method. Cite this article: Bone Joint J 2021;103-B(6 Supple A):59–66


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 329 - 337
1 Feb 2021
MacDessi SJ Griffiths-Jones W Harris IA Bellemans J Chen DB

Aims. A comprehensive classification for coronal lower limb alignment with predictive capabilities for knee balance would be beneficial in total knee arthroplasty (TKA). This paper describes the Coronal Plane Alignment of the Knee (CPAK) classification and examines its utility in preoperative soft tissue balance prediction, comparing kinematic alignment (KA) to mechanical alignment (MA). Methods. A radiological analysis of 500 healthy and 500 osteoarthritic (OA) knees was used to assess the applicability of the CPAK classification. CPAK comprises nine phenotypes based on the arithmetic HKA (aHKA) that estimates constitutional limb alignment and joint line obliquity (JLO). Intraoperative balance was compared within each phenotype in a cohort of 138 computer-assisted TKAs randomized to KA or MA. Primary outcomes included descriptive analyses of healthy and OA groups per CPAK type, and comparison of balance at 10° of flexion within each type. Secondary outcomes assessed balance at 45° and 90° and bone recuts required to achieve final knee balance within each CPAK type. Results. There was similar frequency distribution between healthy and arthritic groups across all CPAK types. The most common categories were Type II (39.2% healthy vs 32.2% OA), Type I (26.4% healthy vs 19.4% OA) and Type V (15.4% healthy vs 14.6% OA). CPAK Types VII, VIII, and IX were rare in both populations. Across all CPAK types, a greater proportion of KA TKAs achieved optimal balance compared to MA. This effect was largest, and statistically significant, in CPAK Types I (100% KA vs 15% MA; p < 0.001), Type II (78% KA vs 46% MA; p = 0.018). and Type IV (89% KA vs 0% MA; p < 0.001). Conclusion. CPAK is a pragmatic, comprehensive classification for coronal knee alignment, based on constitutional alignment and JLO, that can be used in healthy and arthritic knees. CPAK identifies which knee phenotypes may benefit most from KA when optimization of soft tissue balance is prioritized. Further, it will allow for consistency of reporting in future studies. Cite this article: Bone Joint J 2021;103-B(2):329–337


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article: Bone Joint J 2020;102-B(3):276–279


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 117 - 124
1 Jan 2020
MacDessi SJ Griffiths-Jones W Chen DB Griffiths-Jones S Wood JA Diwan AD Harris IA

Aims. It is unknown whether kinematic alignment (KA) objectively improves knee balance in total knee arthroplasty (TKA), despite this being the biomechanical rationale for its use. This study aimed to determine whether restoring the constitutional alignment using a restrictive KA protocol resulted in better quantitative knee balance than mechanical alignment (MA). Methods. We conducted a randomized superiority trial comparing patients undergoing TKA assigned to KA within a restrictive safe zone or MA. Optimal knee balance was defined as an intercompartmental pressure difference (ICPD) of 15 psi or less using a pressure sensor. The primary endpoint was the mean intraoperative ICPD at 10° of flexion prior to knee balancing. Secondary outcomes included balance at 45° and 90°, requirements for balancing procedures, and presence of tibiofemoral lift-off. Results. A total of 63 patients (70 knees) were randomized to KA and 62 patients (68 knees) to MA. Mean ICPD at 10° flexion in the KA group was 11.7 psi (SD 13.1) compared with 32.0 psi in the MA group (SD 28.9), with a mean difference in ICPD between KA and MA of 20.3 psi (p < 0.001). Mean ICPD in the KA group was significantly lower than in the MA group at 45° and 90°, respectively (25.2 psi MA vs 14.8 psi KA, p = 0.004; 19.1 psi MA vs 11.7 psi KA, p < 0.002, respectively). Overall, participants in the KA group were more likely to achieve optimal knee balance (80% vs 35%; p < 0.001). Bone recuts to achieve knee balance were more likely to be required in the MA group (49% vs 9%; p < 0.001). More participants in the MA group had tibiofemoral lift-off (43% vs 13%; p < 0.001). Conclusion. This study provides persuasive evidence that restoring the constitutional alignment with KA in TKA results in a statistically significant improvement in quantitative knee balance, and further supports this technique as a viable alternative to MA. Cite this article: Bone Joint J. 2020;102-B(1):117–124


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 907 - 913
1 Jul 2014
Dossett HG Estrada NA Swartz GJ LeFevre GW Kwasman BG

We have previously reported the short-term radiological results of a randomised controlled trial comparing kinematically aligned total knee replacement (TKR) and mechanically aligned TKR, along with early pain and function scores. In this study we report the two-year clinical results from this trial. A total of 88 patients (88 knees) were randomly allocated to undergo either kinematically aligned TKR using patient-specific guides, or mechanically aligned TKR using conventional instruments. They were analysed on an intention-to-treat basis. The patients and the clinical evaluator were blinded to the method of alignment. At a minimum of two years, all outcomes were better for the kinematically aligned group, as determined by the mean Oxford knee score (40 (15 to 48) versus 33 (13 to 48); p = 0.005), the mean Western Ontario McMaster Universities Arthritis index (WOMAC) (15 (0 to 63) versus 26 (0 to 73); p = 0.005), mean combined Knee Society score (160 (93 to 200) versus 137 (64 to 200); p= 0.005) and mean flexion of 121° (100 to 150) versus 113° (80 to 130) (p = 0.002). The odds ratio of having a pain-free knee at two years with the kinematically aligned technique (Oxford and WOMAC pain scores) was 3.2 (p = 0.020) and 4.9 (p = 0.001), respectively, compared with the mechanically aligned technique. Patients in the kinematically aligned group walked a mean of 50 feet further in hospital prior to discharge compared with the mechanically aligned group (p = 0.044). In this study, the use of a kinematic alignment technique performed with patient-specific guides provided better pain relief and restored better function and range of movement than the mechanical alignment technique performed with conventional instruments. Cite this article: Bone Joint J 2014;96-B:907–13


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1319 - 1328
1 Oct 2017
Shelton TJ Nedopil AJ Howell SM Hull ML

Aims. The aims of this study were to determine the proportion of patients with outlier varus or valgus alignment in kinematically aligned total knee arthroplasty (TKA), whether those with outlier varus or valgus alignment have higher forces in the medial or lateral compartments of the knee than those with in-range alignment and whether measurements of the alignment of the limb, knee and components predict compartment forces. Patients and Methods. The intra-operative forces in the medial and lateral compartments were measured with an instrumented tibial insert in 67 patients who underwent a kinematically aligned TKA during passive movement. The mean of the forces at full extension, 45° and 90° of flexion determined the force in the medial and lateral compartments. Measurements of the alignment of the limb and the components included the hip-knee-ankle (HKA) angle, proximal medial tibial angle (PMTA), and distal lateral femoral angle (DLFA). Measurements of the alignment of the knee and the components included the tibiofemoral angle (TFA), tibial component angle (TCA) and femoral component angle (FCA). Alignment was measured on post-operative, non-weight-bearing anteroposterior (AP) scanograms and categorised as varus or valgus outlier or in-range in relation to mechanically aligned criteria. Results. The proportion of patients with outlier varus or valgus alignment was 16%/24% for the HKA angle, 55%/0% for the PMTA, 0%/57% for the DLFA, 25%/12% for the TFA, 100%/0% for the TCA, and 0%/64% for the FCA. In general, the forces in the medial and lateral compartments of those with outlier alignment were not different from those with in-range alignment except for the TFA, in which patients with outlier varus alignment had a mean paradoxical force which was 6 lb higher in the lateral compartment than those with in-range alignment. None of the measurements of alignment of the limb, knee and components predicted the force in the medial or lateral compartment. Conclusion. Although kinematically aligned TKA has a high proportion of varus or valgus outliers using mechanically aligned criteria, the intra-operative forces in the medial and lateral compartments of patients with outlier alignment were comparable with those with in-range alignment, with no evidence of overload of the medial or lateral compartment of the knee. Cite this article: Bone Joint J 2017;99-B:1319–28


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 640 - 646
1 May 2017
Matsumoto T Takayama K Ishida K Hayashi S Hashimoto S Kuroda R

Aims

The aim of this study was to compare the post-operative radiographic and clinical outcomes between kinematically and mechanically aligned total knee arthroplasties (TKAs).

Patients and Methods

A total of 60 TKAs (30 kinematically and 30 mechanically aligned) were performed in 60 patients with varus osteoarthritis of the knee using a navigation system. The angles of orientation of the joint line in relation to the floor, the conventional and true mechanical axis (tMA) (the line from the centre of the hip to the lowest point of the calcaneus) were compared, one year post-operatively, on single-leg and double-leg standing long leg radiographs between the groups. The range of movement and 2011 Knee Society Scores were also compared between the groups at that time.


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 331 - 339
1 Mar 2019
McEwen P Balendra G Doma K

Aims. The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases?. Patients and Methods. A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS). Results. Postoperative limb alignment did not affect outcomes. The standing hip-knee-ankle (HKA) angle was the sole positive predictor of the joint line convergence angle (JLCA) (p < 0.001). Increasing lateral flexion gap laxity was consistently associated with better outcomes. Lateral flexion gap laxity did not correlate with HKA angle, the JLCA, or lateral extension gap laxity. Minor releases were required in one third of cases. Conclusion. The standing HKA angle is the primary determinant of the JLCA in KTKA. A rectangular flexion gap is produced in only 11% of cases. Lateral flexion gap laxity is consistently associated with better outcomes and does not affect balance in extension. Minor releases are sometimes required as well, particularly in limbs with larger preoperative deformities. Cite this article: Bone Joint J 2019;101-B:331–339


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1360 - 1368
1 Oct 2016
Waterson HB Clement ND Eyres KS Mandalia VI Toms AD

Aims. Our aim was to compare kinematic with mechanical alignment in total knee arthroplasty (TKA). Patients and Methods. We performed a prospective blinded randomised controlled trial to compare the functional outcome of patients undergoing TKA in mechanical alignment (MA) with those in kinematic alignment (KA). A total of 71 patients undergoing TKA were randomised to either kinematic (n = 36) or mechanical alignment (n = 35). Pre- and post-operative hip-knee-ankle radiographs were analysed. The knee injury and osteoarthritis outcome score (KOOS), American Knee Society Score, Short Form-36, Euro-Qol (EQ-5D), range of movement (ROM), two minute walk, and timed up and go tests were assessed pre-operatively and at six weeks, three and six months and one year post-operatively. Results. A total of 78% of the kinematically aligned group (28 patients) and 77% of the mechanically aligned group (27 patients) were within 3° of their pre-operative plan. There were no statistically significant differences in the mean KOOS (difference 1.3, 95% confidence interval (CI) -9.4 to 12.1, p = 0.80), EQ-5D (difference 0.8, 95% CI -7.9 to 9.6, p = 0.84), ROM (difference 0.1, 95% CI -6.0 to 6.1, p = 0.99), two minute distance tolerance (difference 20.0, 95% CI -52.8 to 92.8, p = 0.58), or timed up and go (difference 0.78, 95% CI -2.3 to 3.9, p = 0.62) between the groups at one year. Conclusion. Kinematically aligned TKAs appear to have comparable short-term results to mechanically aligned TKAs with no significant differences in function one year post-operatively. Further research is required to see if any theoretical long-term functional benefits of kinematic alignment are realised or if there are any potential effects on implant survival. Cite this article: Bone Joint J 2016;98-B:1360–8


Aims

The aim of this study was to investigate the distribution of phenotypes in Asian patients with end-stage osteoarthritis (OA) and assess whether the phenotype affected the clinical outcome and survival of mechanically aligned total knee arthroplasty (TKA). We also compared the survival of the group in which the phenotype unintentionally remained unchanged with those in which it was corrected to neutral.

Methods

The study involved 945 TKAs, which were performed in 641 patients with primary OA, between January 2000 and January 2009. These were classified into 12 phenotypes based on the combined assessment of four categories of the arithmetic hip-knee-ankle angle and three categories of actual joint line obliquity. The rates of survival were analyzed using Kaplan-Meier methods and the log-rank test. The Hospital for Special Surgery score and survival of each phenotype were compared with those of the reference phenotype with neutral alignment and a parallel joint line. We also compared long-term survival between the unchanged phenotype group and the corrected to neutral alignment-parallel joint line group in patients with Type IV-b (mild to moderate varus alignment-parallel joint line) phenotype.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 525 - 531
1 Jun 2024
MacDessi SJ van de Graaf VA Wood JA Griffiths-Jones W Bellemans J Chen DB

The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases.

Cite this article: Bone Joint J 2024;106-B(6):525–531.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 450 - 459
1 May 2024
Clement ND Galloway S Baron J Smith K Weir DJ Deehan DJ

Aims

The aim was to assess whether robotic-assisted total knee arthroplasty (rTKA) had greater knee-specific outcomes, improved fulfilment of expectations, health-related quality of life (HRQoL), and patient satisfaction when compared with manual TKA (mTKA).

Methods

A randomized controlled trial was undertaken (May 2019 to December 2021), and patients were allocated to either mTKA or rTKA. A total of 100 patients were randomized, 50 to each group, of whom 43 rTKA and 38 mTKA patients were available for review at 12 months following surgery. There were no statistically significant preoperative differences between the groups. The minimal clinically important difference in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score was defined as 7.5 points.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 961 - 970
1 Sep 2023
Clement ND Galloway S Baron YJ Smith K Weir DJ Deehan DJ

Aims

The primary aim was to assess whether robotic total knee arthroplasty (rTKA) had a greater early knee-specific outcome when compared to manual TKA (mTKA). Secondary aims were to assess whether rTKA was associated with improved expectation fulfilment, health-related quality of life (HRQoL), and patient satisfaction when compared to mTKA.

Methods

A randomized controlled trial was undertaken, and patients were randomized to either mTKA or rTKA. The primary objective was functional improvement at six months. Overall, 100 patients were randomized, 50 to each group, of whom 46 rTKA and 41 mTKA patients were available for review at six months following surgery. There were no differences between the two groups.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 114 - 120
1 Feb 2024
Khatri C Metcalfe A Wall P Underwood M Haddad FS Davis ET

Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of robotic surgery is discussed, including the need to contemporaneously introduce and evaluate such technologies.

Cite this article: Bone Joint J 2024;106-B(2):114–120.


The Bone & Joint Journal
Vol. 104-B, Issue 5 | Pages 604 - 612
1 May 2022
MacDessi SJ Wood JA Diwan A Harris IA

Aims

Intraoperative pressure sensors allow surgeons to quantify soft-tissue balance during total knee arthroplasty (TKA). The aim of this study was to determine whether using sensors to achieve soft-tissue balance was more effective than manual balancing in improving outcomes in TKA.

Methods

A multicentre randomized trial compared the outcomes of sensor balancing (SB) with manual balancing (MB) in 250 patients (285 TKAs). The primary outcome measure was the mean difference in the four Knee injury and Osteoarthritis Outcome Score subscales (ΔKOOS4) in the two groups, comparing the preoperative and two-year scores. Secondary outcomes included intraoperative balance data, additional patient-reported outcome measures (PROMs), and functional measures.


The Bone & Joint Journal
Vol. 105-B, Issue 1 | Pages 35 - 46
1 Jan 2023
Mills K Wymenga AB Bénard MR Kaptein BL Defoort KC van Hellemondt GG Heesterbeek PJC

Aims

The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA).

Methods

A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1449 - 1456
1 Sep 2021
Kazarian GS Lieberman EG Hansen EJ Nunley RM Barrack RL

Aims

The goal of the current systematic review was to assess the impact of implant placement accuracy on outcomes following total knee arthroplasty (TKA).

Methods

A systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the Ovid Medline, Embase, Cochrane Central, and Web of Science databases in order to assess the impact of the patient-reported outcomes measures (PROMs) and implant placement accuracy on outcomes following TKA. Studies assessing the impact of implant alignment, rotation, size, overhang, or condylar offset were included. Study quality was assessed, evidence was graded (one-star: no evidence, two-star: limited evidence, three-star: moderate evidence, four-star: strong evidence), and recommendations were made based on the available evidence.