We prospectively evaluated the long-term outcome of 158 consecutive patients who underwent revision total hip replacement using uncemented computer-assisted design-computer-assisted manufacture femoral components. There were 97 men and 61 women. Their mean age was 63.1 years (34.6 to 85.9). The mean follow-up was 10.8 years (10 to 12). The mean Oxford, Harris and Western Ontario and McMaster hip scores improved from 41.1, 44.2 and 52.4 pre-operatively to 18.2, 89.3 and 12.3, respectively (p <
0.0001, for each). Six patients required further surgery. The overall survival of the femoral component was 97% (95% confidence interval 94.5 to 99.7). These results are comparable to those of previously published reports for revision total hip replacement using either cemented or uncemented components.
We present the 10- to 17-year results of 112 computer-assisted design computer-assisted manufacture femoral components. The total hip replacements were performed between 1992 and 1998 in 111 patients, comprising 53 men and 58 women. Their mean age was 46.2 years (24.6 to 62.2) with a mean follow-up of 13 years (10 to 17). The mean Harris Hip Score improved from 42.4 (7 to 99) to 90.3 (38 to 100), the mean Oxford Hip Score from 43.1 (12 to 59) to 18.2 (12 to 51) and the mean Western Ontario MacMasters University Osteoarthritis Index score from 57.0 (7 to 96) to 11.9 (0 to 85). There was one revision due to failure of the acetabular component but no failures of the femoral component. There were no revisions for aseptic loosening. The worst-case survival in this cohort of custom femoral components at 13.2 years follow-up was 98.2% (95% confidence interval 95 to 99). Overall survival of this series of total hip replacements was 97.3% (95% confidence interval 95 to 99). These results are comparable with the best medium- to long-term results for femoral components used in primary total hip replacement with any means of fixation.
Between June 1991 and January 1995, 42 hydroxyapatite-coated CAD-CAM femoral components were inserted in 25 patients with inflammatory polyarthropathy, 21 of whom had juvenile idiopathic arthritis. Their mean age was 21 years (11 to 35). All the patients were reviewed clinically and radiologically at one, three and five years. At the final review at a mean of 11.2 years (8 to 13) 37 hips in 23 patients were available for assessment. A total of four femoral components (9.5%) had failed, of which two were radiologically loose and two were revised. The four failed components were in patients aged 16 years or less at the time of surgery. Hydroxyapatite-coated customised femoral components give excellent medium- to long-term results in skeletally-mature young adults with inflammatory polyarthropathy. Patients aged less than 16 years at the time of surgery have a risk of 28.5% of failure of the femoral component at approximately ten years.
We report the theoretical basis of a method to measure axial migration of femoral components of total hip replacements (THR). The use of the top of the greater trochanter and a lateral point on the collar of the stem, allowing for variations of up to 10 degrees rotation of the femur in any direction between successive radiographs, gave a maximum error of 0.37 mm. At a more realistic 5 degrees rotational variation, the error was only 0.13 mm. These data were confirmed in an experimental study using digitisation of points and special software. We also showed that the centre of the femoral head, the stem tip, and the lesser trochanter provided less accurate landmarks. In a second study we digitised a series of radiographs of 51 Charnley and 57 Stanmore THRs; the mean migration rates were found to be identical. We then studied 46 successful stems with a minimum follow-up of eight years and 46 stems which had failed by aseptic loosening at different times. At two years, the successful stems had migrated by a mean of 1.45 +/- 0.68 mm, but the failed cases had a mean migration of 4.32 +/- 2.58 mm (p <
0.0001). Of the successful cases 76% had migrated less than 2 mm, while in the failed group 84% had migrated more than 2 mm. For any particular case migration of more than 2.6 mm at two years had only a 5% chance of continuing success and would therefore merit special follow-up. Only 24% of the eventually successful stems showed migration at the stem-cement interface, but this had happened in every failed stem. We conclude that it would be possible to evaluate a new cemented design of femoral stem over a two-year period by the use of our method and to compare its performance against the reported known standard of the Charnley and Stanmore designs.