Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1129 - 1137
1 Sep 2019
Leer-Salvesen S Engesæter LB Dybvik E Furnes O Kristensen TB Gjertsen J

Aims

The aim of this study was to investigate mortality and risk of intraoperative medical complications depending on delay to hip fracture surgery by using data from the Norwegian Hip Fracture Register (NHFR) and the Norwegian Patient Registry (NPR).

Patients and Methods

A total of 83 727 hip fractures were reported to the NHFR between 2008 and 2017. Pathological fractures, unspecified type of fractures or treatment, patients less than 50 years of age, unknown delay to surgery, and delays to surgery of greater than four days were excluded. We studied total delay (fracture to surgery, n = 38 754) and hospital delay (admission to surgery, n = 73 557). Cox regression analyses were performed to calculate relative risks (RRs) adjusted for sex, age, American Society of Anesthesiologists (ASA) classification, type of surgery, and type of fracture. Odds ratio (OR) was calculated for intraoperative medical complications. We compared delays of 12 hours or less, 13 to 24 hours, 25 to 36 hours, 37 to 48 hours, and more than 48 hours.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1565 - 1571
1 Dec 2018
Kristensen TB Dybvik E Furnes O Engesæter LB Gjertsen J

Aims

The aim of this large registry-based study was to compare mid-term survival rates of cemented femoral stems of different designs used in hemiarthroplasty for a fracture of the femoral neck.

Patients and Methods

From the Norwegian Hip Fracture Register (NHFR), 20 532 primary cemented bipolar hemiarthroplasties, which were undertaken in patients aged > 70 years with a femoral neck fracture between 2005 and 2016, were included. Polished tapered stems (n = 12 065) (Exeter and CPT), straight stems (n = 5545) (Charnley, Charnley Modular, and Spectron EF), and anatomical stems (n = 2922) (Lubinus SP2) were included. The survival of the implant with any reoperation as the endpoint was calculated using the Kaplan–Meier method and hazard ratios (HRs), and the different indications for reoperation were calculated using Cox regression analysis.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 449 - 454
1 Apr 2014
Laborie LB Lehmann TG Engesæter IØ Sera F Engesæter LB Rosendahl K

We report on gender-specific reference intervals of the alpha angle and its association with other qualitative cam-type findings in femoroacetabular impingement at the hip, according to a population-based cohort of 2038 19-year-olds, 1186 of which were women (58%). The alpha angle was measured on standardised frog-leg lateral and anteroposterior (AP) views using digital measurement software, and qualitative cam-type findings were assessed subjectively on both views by independent observers. In all, 2005 participants (837 men, 1168 women, mean age 18.6 years (17.2 to 20.1) were included in the analysis. For the frog-leg view, the mean alpha angle (right hip) was 47° (26 to 79) in men and 42° (29 to 76) in women, with 97.5 percentiles of 68° and 56°, respectively. For the AP view, the mean values were 62° (40 to 105) and 52° (36 to 103) for men and women, respectively, with 97.5 percentiles of 93° and 94°. Associations between higher alpha angles and all qualitative cam-type findings were seen for both genders on both views. The reference intervals presented for the alpha angle in this cross-sectional study are wide, especially for the AP view, with higher mean values for men than women on both views.

Cite this article: Bone Joint J 2014;96-B:449–54.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 862 - 862
1 Jun 2013
Gjertsen J Lie SA Vinje T Engesæter LB Hallan G Matre K Furnes O

We welcome letters to the Editor concerning articles that have recently been published. Such letters will be subject to the usual stages of selection and editing; where appropriate the authors of the original article will be offered the opportunity to reply.


The Bone & Joint Journal
Vol. 95-B, Issue 4 | Pages 452 - 458
1 Apr 2013
Lehmann TG Engesæter IØ Laborie LB Lie SA Rosendahl K Engesæter LB

The reported prevalence of an asymptomatic slip of the contralateral hip in patients operated on for unilateral slipped capital femoral epiphysis (SCFE) is as high as 40%. Based on a population-based cohort of 2072 healthy adolescents (58% women) we report on radiological and clinical findings suggestive of a possible previous SCFE. Common threshold values for Southwick’s lateral head–shaft angle (≥ 13°) and Murray’s tilt index (≥ 1.35) were used. New reference intervals for these measurements at skeletal maturity are also presented.

At follow-up the mean age of the patients was 18.6 years (17.2 to 20.1). All answered two questionnaires, had a clinical examination and two hip radiographs.

There was an association between a high head–shaft angle and clinical findings associated with SCFE, such as reduced internal rotation and increased external rotation. Also, 6.6% of the cohort had Southwick’s lateral head–shaft angle ≥ 13°, suggestive of a possible slip. Murray’s tilt index ≥ 1.35 was demonstrated in 13.1% of the cohort, predominantly in men, in whom this finding was associated with other radiological findings such as pistol-grip deformity or focal prominence of the femoral neck, but no clinical findings suggestive of SCFE.

This study indicates that 6.6% of young adults have radiological findings consistent with a prior SCFE, which seems to be more common than previously reported.

Cite this article: Bone Joint J 2013;95-B:452–8.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 279 - 285
1 Feb 2013
Engesæter IØ Laborie LB Lehmann TG Fevang JM Lie SA Engesæter LB Rosendahl K

In Norway total joint replacement after hip dysplasia is reported more commonly than in neighbouring countries, implying a higher prevalence of the condition. We report on the prevalence of radiological features associated with hip dysplasia in a population of 2081 19-year-old Norwegians. The radiological measurements used to define hip dysplasia were Wiberg’s centre-edge (CE) angle at thresholds of < 20° and < 25°, femoral head extrusion index <  75%, Sharp’s angle > 45°, an acetabular depth to width ratio < 250 and the sourcil shape assessed subjectively. The whole cohort underwent clinical examination of their range of hip movement, body mass index (BMI), and Beighton hypermobility score, and were asked to complete the EuroQol (EQ-5D) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). The prevalence of hip dysplasia in the cohort varied from 1.7% to 20% depending on the radiological marker used. A Wiberg’s CE angle <  20° was seen in 3.3% of the cohort: 4.3% in women and 2.4% in men. We found no association between subjects with multiple radiological signs indicative of dysplasia and BMI, Beighton score, EQ-5D or WOMAC. Although there appears to be a high prevalence of hip dysplasia among 19-year-old Norwegians, this is dependent on the radiological parameters applied.

Cite this article: Bone Joint J 2013;95-B:279–85.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1113 - 1119
1 Aug 2012
Gjertsen J Lie SA Vinje T Engesæter LB Hallan G Matre K Furnes O

Using data from the Norwegian Hip Fracture Register, 8639 cemented and 2477 uncemented primary hemiarthroplasties for displaced fractures of the femoral neck in patients aged > 70 years were included in a prospective observational study. A total of 218 re-operations were performed after cemented and 128 after uncemented procedures. Survival of the hemiarthroplasties was calculated using the Kaplan-Meier method and hazard rate ratios (HRR) for revision were calculated using Cox regression analyses. At five years the implant survival was 97% (95% confidence interval (CI) 97 to 97) for cemented and 91% (95% CI 87 to 94) for uncemented hemiarthroplasties. Uncemented hemiarthroplasties had a 2.1 times increased risk of revision compared with cemented prostheses (95% confidence interval 1.7 to 2.6, p < 0.001). The increased risk was mainly caused by revisions for peri-prosthetic fracture (HRR = 17), aseptic loosening (HRR = 17), haematoma formation (HRR = 5.3), superficial infection (HRR = 4.6) and dislocation (HRR = 1.8). More intra-operative complications, including intra-operative death, were reported for the cemented hemiarthroplasties. However, in a time-dependent analysis, the HRR for re-operation in both groups increased as follow-up increased.

This study showed that the risk for revision was higher for uncemented than for cemented hemiarthroplasties.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 591 - 594
1 May 2007
Lie SA Hallan G Furnes O Havelin LI Engesæter LB

We analysed the results of different strategies in the revision of primary uncemented acetabular components reported to the Norwegian Arthroplasty Register. The aim was to compare the risk of further acetabular revision after isolated liner exchange and complete component revision. The results of exchanging well-fixed components were also compared with those of exchanging loose acetabular components. The period studied was between September 1987 and April 2005. The following groups were compared: group 1, exchange of liner only in 318 hips; group 2, exchange of well-fixed components in 398; and group 3, exchange of loose components in 933. We found that the risk of a further cup revision was lower after revision of well-fixed components (relative risk from a Cox model (RR) = 0.56, 95% confidence interval 0.37% to 0.87%) and loose components (RR = 0.56, 95% confidence interval 0.39% to 0.80%), compared with exchange of the liner in isolation. The most frequent reason for a further acetabular revision was dislocation, accounting for 61 (28%) of the re-revisions. Other reasons for further revision included pain in 27 (12%), loosening in 24 (11%) and infection in 20 (9%). Re-revisions because of pain were less frequent when complete component (fixed or loose) revision was undertaken compared with isolated exchange of the liner (RR = 0.20 (95% confidence interval 0.06% to 0.65%) and RR = 0.10 (95% confidence interval 0.03% to 0.30%), respectively). The risk of further acetabular revision for infection, however, did not differ between the groups.

In this study, exchange of the liner only had a higher risk of further cup revision than revision of the complete acetabular component. Our results suggest that the threshold for revising well-fixed components in the case of liner wear and osteolysis should be lowered.


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 4 | Pages 504 - 509
1 May 2004
Lie SA Havelin LI Furnes ON Engesæter LB Vollset SE

We present the results for 4762 revision total hip arthroplasties with no previous infection in the hip, which were reported to the Norwegian Arthroplasty Register between 1987 and 2003. The ten-year failure rate for revised prostheses was 26% (95% CI 25 to 26). Cox regression analyses were undertaken separately for acetabular and femoral revision components. Cemented revision components without allograft was the reference category. For acetabular components, we found a significantly reduced risk of failure for uncemented revisions both with (relative risk (RR) = 0.66; 95% CI 0.43 to 0.99) and without (RR = 0.37; 95% CI 0.22 to 0.61) allograft. For femoral components, we found a significantly reduced risk of failure for uncemented revisions, both with (RR = 0.27; 95% CI 0.16 to 0.46) and without (RR = 0.22; 95% CI 0.11 to 0.46) unimpacted allograft. This reduced risk of failure also applied to cemented revision components with allograft (RR = 0.53; 95% CI 0.33 to 0.84) and with impaction bone grafting (RR = 0.34; 95% CI 0.19 to 0.62). Revision prostheses have generally inferior results when compared with primary prostheses. Recementation without allograft, and uncemented revision with bone impaction, were associated with worse results than the other revision techniques which we studied.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 776 - 776
1 Jul 2003
ESPEHAUG B FURNES O HAVELIN LI ENGESÆTER LB VOLLSET SE


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 839 - 845
1 Aug 2002
Havelin LI Espehaug B Engesæter LB

We have compared the survival of two hydroxyapatite (HA)-coated cups, 1208 Atoll hemispheric and 2641 Tropic threaded, with cemented Charnley all-polyethylene cups (16 021) using the Cox regression model.

The Tropic cup used in combination with an alumina ceramic femoral head, had good results, similar to those of the Charnley cup. When used in combination with a stainless-steel head, however, the risk of revision beyond four years was increased 3.4 times for the Tropic cup compared with the Charnley cup (p < 0.001). Over the same period, the Atoll cup had an increased risk of revision of 3.8 times when used with the alumina heads (p < 0.001) and an increased risk of 6.1 times when used with stainless-steel heads (p < 0.001). Revision because of wear and osteolysis was more common with both types of HA-coated cup than with the Charnley cup. The rate of revision of the Atoll cup because of aseptic loosening was also increased.

We found that HA-coated cups did not perform better than the Charnley cup.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 832 - 838
1 Aug 2002
Espehaug B Furnes O Havelin LI Engesæter LB Vollset SE

Using data from the Norwegian Arthroplasty Register, we have the assessed survival of 17 323 primary Charnley hip prostheses in patients with osteoarthritis based upon the type of cement used for the fixation of the implant.

Overall, 9.2% had been revised after follow-up for ten years; 71% of the failures involved aseptic loosening of the femoral component. We observed significantly increased rates of failure for prostheses inserted with CMW1 and CMW3 cements. Using implants fixed with gentamicin-containing Palacos cement as the reference, the adjusted Cox regression failure rate ratios were 1.1 (95% CI 0.9 to 1.4) for implants cemented with plain Palacos, 1.1 (95% CI 0.7 to 1.6) for Simplex, 2.1 (95% 1.5 to 2.9) for gentamicin-containing CMW1, 2.0 (95% CI 1.6 to 2.4) for plain CMW1 and 3.0 (95% CI 2.3 to 3.9) for implants fixed with CMW3 cement. The adjusted failure rate at ten years varied from 5.9% for implants fixed with gentamicin-containing Palacos to 17% for those fixed with CMW3.