Advertisement for orthosearch.org.uk
Results 1 - 20 of 161
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 315 - 319
1 Feb 2010
Lalliss SJ Branstetter JG

Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of > 2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of > 2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 3 | Pages 427 - 484
1 Aug 1981
Uhthoff H Bardos D Liskova-Kiar M

An experimental study is reported of fracture healing in the femora of 36 Beagle dogs, comparing the results of using stainless steel plates with those of using less rigid titanium alloy plates. The alloy plates led to the appearance of a small amount of periosteal callus without any histological evidence of fracture instability, thus allowing the radiological assessment of fracture union. This also produced less bone loss during the remodelling phase. Radiological measurements 24 weeks after osteotomy showed cortical thickness to be reduced by six per cent under titanium alloy and by 19 per cent under stainless steel, while histological measurements showed a total bone loss of 3.7 per cent under titanium alloy and of 11 per cent under stainless steel plates. Removal of the titanium alloy plates after eight weeks followed by a recovery period of 16 weeks produced an increase of cortical thickness of 69 per cent and a gain in total bone mass of 30 per cent. Titanium alloy plates also produced less soft-tissue reaction than stainless steel plates. It is concluded that this alloy is a promising material for internal fixation devices


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 1 | Pages 107 - 113
1 Feb 1976
Tonino A Davidson C Klopper P Linclau L

In a preliminary experiment the paired radii and femora of dogs were tested for bone mineral mass and mechanical properties including the load at break, the ultimate bending strength and the modulus of elasticity; symmetry was observed for most of the parameters determined. The influence of the elasticity of materials used for the internal splintage of bone and its relationship to bone remodeling were then investigated for stainless steel and plastic plates applied to the femora of dogs. A significant decrease in bone mineral mass per centimetre length of bone and in mechanical properties was demonstrated for the femora plated with steel, and microradiography showed that this was due to massive endosteal resorption. A model for determining the influence of protection from stress in bone is presented


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1731 - 1735
1 Nov 2021
Iobst CA Frost MW Rölfing JD Rahbek O Bafor A Duncan M Kold S

Aims

Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological bone abnormalities between STRYDE, PRECICE, and FITBONE nails prior to nail removal.

Methods

This was a retrospective case series from three centres. Patients were included if they had either of the three limb-lengthening nails (STYDE, PRECICE, or FITBONE) removed. Standard orthogonal radiographs immediately prior to nail removal were examined for bone abnormalities at the junction of the telescoping nail parts.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 116 - 121
1 Jul 2020
Heise G Black CM Smith R Morrow BR Mihalko WM

Aims. This study aimed to determine if macrophages can attach and directly affect the oxide layers of 316L stainless steel, titanium alloy (Ti6Al4V), and cobalt-chromium-molybdenum alloy (CoCrMo) by releasing components of these alloys. Methods. Murine peritoneal macrophages were cultured and placed on stainless steel, CoCrMo, and Ti6Al4V discs into a 96-well plate. Cells were activated with interferon gamma and lipopolysaccharide. Macrophages on stainless steel discs produced significantly more nitric oxide (NO) compared to their control counterparts after eight to ten days and remained elevated for the duration of the experiment. Results. On stainless steel, both nonactivated and activated cell groups were shown to have a significant increase in metal ion release for Cr, Fe, and Ni (p < 0.001, p = 0.002, and p = 0.020 respectively) compared with medium only and showed macrophage-sized corrosive pits on the stainless steel surface. On titanium alloy discs there was a significant increase in aluminum (p < 0.001) among all groups compared with medium only. Conclusion. These results indicated that macrophages were able to attach to and affect the oxide surface of stainless steel and titanium alloy discs. Cite this article: Bone Joint J 2020;102-B(7 Supple B):116–121


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 12 | Pages 1631 - 1635
1 Dec 2005
von Schewelov T Sanzén L Önsten I Carlsson Å Besjakov J

We investigated the wear characteristics and clinical performance of four different total hip joint articulations in 114 patients. Wear and migration was measured by roentgenstereophotogrammetric analysis at five years or at the last follow-up. The mean annual wear was 0.11 mm for a stainless steel/Enduron articulation, 0.34 mm for stainless steel/Hylamer cup, 0.17 mm for zirconium oxide ceramic/Enduron and 0.40 mm for zirconium oxide ceramic/Hylamer. The difference between the groups was significant (p < 0.008) except for stainless steel/Hylamer vs zirconium oxide ceramic/Hylamer (p = 0.26). At present, 12 patients have undergone a revision procedure, four at five years and eight thereafter. No patient who received a stainless steel/Enduron articulation at their primary replacement required revision. Conflicting results have been reported about the performance of the zirconium oxide ceramic femoral head, but our findings suggest that it should not be used with a polymethylmethacrylate acetabular component. Hylamer has already been withdrawn from the market


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 196 - 201
1 Feb 2010
Hallan G Dybvik E Furnes O Havelin LI

The Norwegian Arthroplasty Register has shown that several designs of uncemented femoral stems give good or excellent survivorship. The overall findings for uncemented total hip replacement however, have been disappointing because of poor results with the use of metal-backed acetabular components. In this study, we exclusively investigated the medium-to long-term performance of primary uncemented metal-backed acetabular components. A total of 9113 primary uncemented acetabular components were implanted in 7937 patients between 1987 and 2007. These were included in a prospective, population-based observational study. All the implants were modular and metal-backed with ultra-high-molecular-weight polyethylene liners. The femoral heads were made of stainless steel, cobalt-chrome (CoCr) alloy or alumina ceramic. In all, seven different designs of acetabular component were evaluated by the Kaplan-Meier survivorship method and Cox regression analysis. Most acetabular components performed well up to seven years. When the endpoint was revision of the acetabular component because of aseptic loosening, the survival ranged between 87% and 100% at ten years. However, when the endpoint was revision for any reason, the survival estimates were 81% to 92% for the same implants at ten years. Aseptic loosening, wear, osteolysis and dislocation were the main reasons for the relatively poor overall performance of the acetabular components. Prostheses with alumina heads performed slightly better than those with stainless steel or CoCr alloy in subgroups. Whereas most acetabular components performed well at seven years, the survivorship declined with longer follow-up. Fixation was generally good. None of the metal-backed uncemented acetabular components with ultra-high-molecular-weight polyethylene liners in our study had satisfactory long-term results because of high rates of wear, osteolysis, aseptic loosening and dislocation


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 4 | Pages 580 - 581
1 Jul 1991
Ritter M Eizember L Keating E Faris P

We used the stainless steel cable grip system described by Dall and Miles in 1983 to fix trochanters in 40 hips after total arthroplasty with trochanteric osteotomy. The cable broke in 32.5% of the hips; the trochanter failed to unite in 37.5%. Significantly more cables broke when placed inside the femoral canal than when the cable was placed round the femoral shaft (58% as against 9.5%, difference p less than 0.01). The high incidence of breakage may have resulted from contact between the stainless steel cable and the titanium prosthesis, from the acute angulation, or because of the lower fatigue strength of stainless steel. Better results have been obtained using cables with a higher fatigue strength, passed outside the proximal femur


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 836 - 841
1 Jun 2012
Frisoni T Cevolani L Giorgini A Dozza B Donati DM

We retrospectively reviewed 101 consecutive patients with 114 femoral tumours treated by massive bone allograft at our institution between 1986 and 2005. There were 49 females and 52 males with a mean age of 20 years (4 to 74). At a median follow-up of 9.3 years (2 to 19.8), 36 reconstructions (31.5%) had failed. The allograft itself failed in 27 reconstructions (24%). Mechanical complications such as delayed union, fracture and failure of fixation were studied. The most adverse factor on the outcome was the use of intramedullary nails, followed by post-operative chemotherapy, resection length > 17 cm and age > 18 years at the time of intervention. The simultaneous use of a vascularised fibular graft to protect the allograft from mechanical complications improved the outcome, but the use of intramedullary cementing was not as successful. In order to improve the strength of the reconstruction and to advance the biology of host–graft integration, we suggest avoiding the use of intramedullary nails and titanium plates, but instead using stainless steel plates, as these gave better results. The use of a supplementary vascularised fibular graft should be strongly considered in adult patients with resection > 17 cm and in those who require post-operative chemotherapy


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 824 - 827
1 Jun 2011
Wanner S Gstöttner M Meirer R Hausdorfer J Fille M Stöckl B

Biofilm-associated infections in wounds or on implants are difficult to treat. Eradication of the bacteria is nearly always impossible, despite the use of specific antibiotics. The bactericidal effects of high-energy extracorporeal shock waves on Staphylococcus aureus have been reported, but the effect of low-energy shock waves on staphylococci and staphylococcal biofilms has not been investigated. In this study, biofilms grown on stainless steel washers were examined by electron microscopy. We tested ten experimental groups with Staph. aureus-coated washers and eight groups with Staph. epidermidis. The biofilm-cultured washers were exposed to low-energy shock waves at 0.16 mJ/mm. 2. for 500 impulses. The washers were then treated with cefuroxime, rifampicin and fosfomycin, both alone and in combination. All tests were carried out in triplicate. Viable cells were counted to determine the bactericidal effect. The control groups of Staph. aureus and Staph. epidermidis revealed a cell count of 6 × 10. 8. colony-forming units/ml. Complete eradication was achieved using the combination of antibiotic therapy (single antibiotic in Staph. aureus, a combination in Staph. epidermidis) and shock wave application (p < 0.01). We conclude that shock waves combined with antibiotics could be tested in an in vitro model of infection


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 4 | Pages 647 - 651
1 Jul 1996
Arens S Schlegel U Printzen G Ziegler WJ Perren SM Hansis M

Resistance to infection may be influenced by foreign bodies such as devices for fracture fixation. It is known that stainless steel and commercially-pure titanium have different biocompatibilities. We have investigated susceptibility to infection after a local bacterial challenge using standard 2.0 dynamic compression plates of either stainless steel or titanium in rabbit tibiae. After the wounds had been closed, various concentrations of a strain of Staphylococcus aureus were inoculated percutaneously. Under otherwise identical experimental conditions the rate of infection for steel plates (75%) was significantly higher than that for titanium plates (35%) (p < 0.05)


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1561 - 1567
1 Nov 2005
Janssen D Aquarius R Stolk J Verdonschot N

The Capital Hip implant was a Charnley-based system which included a flanged and a roundback stem, both of which were available in stainless steel and titanium. The system was withdrawn from the market because of its inferior performance. However, all four of the designs did not produce poor rates of survival. Using a simulated-based, finite-element analysis, we have analysed the Capital Hip system. Our aim was to investigate whether our simulation was able to detect differences which could account for the varying survival between the Capital Hip designs, thereby further validating the simulation. We created finite-element models of reconstructions with the flanged and roundback Capital Hips. A loading history was applied representing normal walking and stair-climbing, while we monitored the formation of fatigue cracks in the cement. Corresponding to the clinical findings, our simulation was able to detect the negative effects of the titanium material and the flanged design in the Capital Hip system. Although improvements could be made by including the effect of the roughness of the surface of the stem, our study increased the value of the model as a predictive tool for determining failure of an implant


The Journal of Bone & Joint Surgery British Volume
Vol. 44-B, Issue 1 | Pages 122 - 128
1 Feb 1962
Hicks JH Cater WH

1. Two of the three metals at present in use in orthopaedic surgery have been studied to assess their tendency to cause wound reactions. 2. Cobalt-chrome alloy proved to be the better, the incidence of obligatory plate removal being at most 3 per cent. Visible corrosion in this metal never occurred. 3. 18/8 Mo stainless steel proved to be the poorer, the incidence of obligatory plate removal being 20 per cent. Visible corrosion of the metal is estimated to have occurred in about 5 per cent of screws inserted. 4. Regardless of such accelerating factors as metallic transfer, 18/8 Mo steel may have to be accepted as inherently more susceptible to corrosion than is cobalt-chrome alloy. 5. The qualities of two other stainless steels also became evident. Previous work describing the very bad situation arising from the use of EMS was confirmed. By contrast, a steel that was in use before 1951 gave little trouble. This steel was probably FSL


The Journal of Bone & Joint Surgery British Volume
Vol. 65-B, Issue 1 | Pages 66 - 71
1 Jan 1983
Uhthoff H Finnegan M

The long-term effect of stainless steel and titanium alloy plates on structural remodelling and bone mass of osteotomised canine femora was studied and the effects of early and late removal of plates were compared in 27 adult Beagles. Radiological, histological, histomorphometric and tetracycline fluorescence studies led to three conclusions. First, the continuous (60 weeks) presence of plates, irrespective of their composition, delays remodelling and leads to a reduction of bone mass. This loss is significantly greater under stainless steel plates. Secondly, the removal of plates at eight weeks leads during the 52 ensuing weeks to a marked and widespread structural remodelling and to a return to normal bone mass, irrespective of the type of plate used. However, remodelling is more intense after titanium alloy plates have been used; it is not complete 60 weeks after osteotomy. Thirdly, removal of plates at 40 weeks activates remodelling during the ensuing 20 weeks to a lesser degree and to a more limited extent than early plate removal. The clinical significance of this study is that less rigid but stable internal fixation permits the radiological assessment of healing and thus the determination of the optimal moment for removal of the plates. It also reduces the degree of bone loss should the plate be left in situ for any reason


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 6 | Pages 900 - 905
1 Aug 2003
Shardlow DL Stone MH Ingham E Fisher J

Proponents of the biological theory of aseptic loosening have in recent years tended to concentrate on the production and distribution of particulate ultra-high-molecular-weight polyethylene (UHMWPE) debris around the potential joint space. However, mechanical loading of cemented implants with the differing elastic moduli of metal stems, polymethylmethacrylate (PMMA) cement and bone can result in relative micromotion, implying the potential for production of metal and PMMA particles from the stem-cement interface by fretting wear. In order to investigate the production and biological reactivity of debris from this interface, PMMA and metal particulate debris was produced by sliding wear of PMMA pins containing barium sulphate and zirconium dioxide against a Vaquasheened stainless steel counterface. This debris was characterised by SEM, energy-dispersive analysis by X-ray (EDAX) and image analysis, then added to cell cultures of a human monocytic cell line, U937, and stimulation of pro-osteolytic cytokines measured by ELISA. Large quantities of PMMA cement debris were generated by the sliding wear of PMMA pins against Vaquasheened stainless steel plates in the method developed for this study. Both cements stimulated the release of pro-osteolytic TNFα from the U937 monocytic cell line, in a dose-dependent fashion. There was a trend towards greater TNFα release with Palacos cement than CMW cement at the same dose. Palacos particles also caused significant release of IL-6, another pro-osteolytic cytokine, while CMW did not. The particulate cement debris produced did not stimulate the release of GM-CSF or IL1β from the U937 cells. These results may explain the cytokine pathway responsible for bone resorption caused by particulate PMMA debris. Radio-opaque additives are of value in surgical practice and clinical studies to quantify the relevance of these in vitro findings are required before the use of cement containing radio-opacifier is constrained


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1259 - 1264
1 Sep 2011
Wähnert D Windolf M Brianza S Rothstock S Radtke R Brighenti V Schwieger K

We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm. 3. ) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 188 - 194
1 Feb 2014
Gilbody J Taylor C Bartlett GE Whitehouse SL Hubble MJW Timperley AJ Howell JR Wilson MJ

Impaction bone grafting for the reconstitution of bone stock in revision hip surgery has been used for nearly 30 years. Between 1995 and 2001 we used this technique in acetabular reconstruction, in combination with a cemented component, in 304 hips in 292 patients revised for aseptic loosening. The only additional supports used were stainless steel meshes placed against the medial wall or laterally around the acetabular rim to contain the graft. All Paprosky grades of defect were included. Clinical and radiographic outcomes were collected in surviving patients at a minimum of ten years after the index operation. Mean follow-up was 12.4 years (. sd. 1.5) (10.0 to 16.0). Kaplan–Meier survival with revision for aseptic loosening as the endpoint was 85.9% (95% CI 81.0 to 90.8) at 13.5 years. Clinical scores for pain relief remained satisfactory, and there was no difference in clinical scores between cups that appeared stable and those that appeared radiologically loose. . Cite this article: Bone Joint J 2014;96-B:188–94


The Journal of Bone & Joint Surgery British Volume
Vol. 48-B, Issue 3 | Pages 567 - 576
1 Aug 1966
Mears DC

1. Electron-probe microanalysis shows that corrosion of an 18 per cent chromium-8 per cent nickel-3 per cent molybdenum stainless steel implant and of some pure metal implants may affect not only the surrounding tissues but also the individual cells. 2. Metallic contamination from surgical tools is confirmed. 3. Electron-probe microanalysis is shown to be a useful tool for studying individual biological cells. 4. The principles of electron-probe microanalysis are described


The Journal of Bone & Joint Surgery British Volume
Vol. 67-B, Issue 4 | Pages 656 - 658
1 Aug 1985
Howard C Tayton K Gibbs A

The tissue surrounding carbon fibre reinforced epoxy resin plates applied to forearm and tibial fractures was biopsied in 32 patients at the time the plates were removed. The reaction was minimal and was compared with that in a control group of 16 similar patients in whom stainless steel plates were used. No significant histological differences were found. A series of experiments on rats, in which the histology was studied from 2 to 78 weeks, also showed that there was very little reaction to carbon fibre reinforced plastic


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 4 | Pages 586 - 591
1 Jul 1990
Ali M French T Hastings G Rae T Rushton N Ross E Wynn-Jones C

We compared the mechanical properties of carbon fibre composite bone plates with those of stainless steel and titanium. The composite plates have less stiffness with good fatigue properties. Tissue culture and small animal implantation confirmed the biocompatibility of the material. We also present a preliminary report on the use of the carbon fibre composite plates in 40 forearm fractures. All fractures united, 67% of them showing radiological remodelling within six months. There were no refractures or mechanical failures, but five fractures showed an unexpected reaction; this is discussed