Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article:
Arthroscopic microfracture is a conventional form of treatment for patients with osteochondritis of the talus, involving an area of < 1.5 cm2. However, some patients have persistent pain and limitation of movement in the early postoperative period. No studies have investigated the combined treatment of microfracture and shortwave treatment in these patients. The aim of this prospective single-centre, randomized, double-blind, placebo-controlled trial was to compare the outcome in patients treated with arthroscopic microfracture combined with radial extracorporeal shockwave therapy (rESWT) and arthroscopic microfracture alone, in patients with ostechondritis of the talus. Patients were randomly enrolled into two groups. At three weeks postoperatively, the rESWT group was given shockwave treatment, once every other day, for five treatments. In the control group the head of the device which delivered the treatment had no energy output. The two groups were evaluated before surgery and at six weeks and three, six and 12 months postoperatively. The primary outcome measure was the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale. Secondary outcome measures included a visual analogue scale (VAS) score for pain and the area of bone marrow oedema of the talus as identified on sagittal fat suppression sequence MRI scans.Aims
Methods
To identify the incidence and risk factors for five-year same-site recurrent disc herniation (sRDH) after primary single-level lumbar discectomy. Secondary outcome was the incidence and risk factors for five-year sRDH reoperation. A retrospective study was conducted using prospectively collected data and patient-reported outcome measures, including the Oswestry Disability Index (ODI), between 2008 and 2019. Postoperative sRDH was identified from clinical notes and the centre’s MRI database, with all imaging providers in the region checked for missing events. The Kaplan-Meier method was used to calculate five-year sRDH incidence. Cox proportional hazards model was used to identify independent variables predictive of sRDH, with any variable not significant at the p < 0.1 level removed. Hazard ratios (HRs) were calculated with 95% confidence intervals (CIs).Aims
Methods
The aim of this study was to investigate the influence of age on the cost-effectiveness of arthroscopic rotator cuff repair. A total of 112 patients were prospectively monitored for two years after arthroscopic rotator cuff repair using the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH), the Oxford Shoulder Score (OSS), and the EuroQol five-dimension questionnaire (EQ-5D). Complications and use of healthcare resources were recorded. The incremental cost-effectiveness ratio (ICER) was used to express the cost per quality-adjusted life-year (QALY). Propensity score-matching was used to compare those aged below and above 65 years of age. Satisfaction was determined using the Net Promoter Score (NPS). Linear regression was used to identify variables that influenced the outcome at two years postoperatively.Aims
Patients and Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods
Little is known about the effect of haemorrhagic shock and resuscitation
on fracture healing. This study used a rabbit model with a femoral
osteotomy and fixation to examine this relationship. A total of 18 male New Zealand white rabbits underwent femoral
osteotomy with intramedullary fixation with ‘shock’ (n = 9) and
control (n = 9) groups. Shock was induced in the study group by
removal of 35% of the total blood volume 45 minutes before resuscitation
with blood and crystalloid. Fracture healing was monitored for eight weeks
using serum markers of healing and radiographs.Aims
Materials and Methods
Increasing innovation in rapid prototyping (RP)
and additive manufacturing (AM), also known as 3D printing, is bringing
about major changes in translational surgical research. This review describes the current position in the use of additive
manufacturing in orthopaedic surgery. Cite this article:
The ageing population and an increase in both
the incidence and prevalence of cancer pose a healthcare challenge, some
of which is borne by the orthopaedic community in the form of osteoporotic
fractures and metastatic bone disease. In recent years there has
been an increasing understanding of the pathways involved in bone
metabolism relevant to osteoporosis and metastases in bone. Newer
therapies may aid the management of these problems. One group of
drugs, the antibody mediated anti-resorptive therapies (AMARTs)
use antibodies to block bone resorption pathways. This review seeks
to present a synopsis of the guidelines, pharmacology and potential pathophysiology
of AMARTs and other new anti-resorptive drugs. We evaluate the literature relating to AMARTs and new anti-resorptives
with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for
Nuclear Factor Kappa-B Ligand. It is the first AMART approved by
the National Institute for Health and Clinical Excellence and the
US Food and Drug Administration. Other novel anti-resorptives awaiting
approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and
prevention of the complications of bone metastases. Recent evidence
suggests, however, that denosumab may have an adverse event profile
similar to bisphosphonates, including atypical femoral fractures.
It is, therefore, essential that orthopaedic surgeons are conversant
with these medications and their safe usage. Take home message: Denosumab has important orthopaedic indications
and has been shown to significantly reduce patient morbidity in
osteoporosis and metastatic bone disease. Cite this article:
Systemic antibiotics reduce infection in open
fractures. Local delivery of antibiotics can provide higher doses
to wounds without toxic systemic effects. This study investigated
the effect on infection of combining systemic with local antibiotics
via polymethylmethacrylate (PMMA) beads or gel delivery. An established Combined local and systemic antibiotics were superior to systemic
antibiotics alone at reducing the quantity of bacteria recoverable
from each group (p = 0.002 for gel; p = 0.032 for beads). There
was no difference in the bacterial counts between bead and gel delivery
(p = 0.62). These results suggest that local antibiotics augment the antimicrobial
effect of systemic antibiotics. Although no significant difference
was found between vehicles, gel delivery offers technical advantages
with its biodegradable nature, ability to conform to wound shape
and to deliver increased doses. Further study is required to see
if the gel delivery system has a clinical role. Cite this article:
The treatment of osteochondral lesions is of
great interest to orthopaedic surgeons because most lesions do not heal
spontaneously. We present the short-term clinical outcome and MRI
findings of a cell-free scaffold used for the treatment of these
lesions in the knee. A total of 38 patients were prospectively evaluated
clinically for two years following treatment with an osteochondral
nanostructured biomimetic scaffold. There were 23 men and 15 women; the
mean age of the patients was 30.5 years (15 to 64). Clinical outcome
was assessed using the Knee Injury and Osteoarthritis Outcome Score
(KOOS), the Tegner activity scale and a Visual Analgue scale for
pain. MRI data were analysed based on the Magnetic Resonance Observation
of Cartilage Repair Tissue (MOCART) scoring system at three, 12
and 24 months post-operatively. There was a continuous significant
clinical improvement after surgery. In two patients, the scaffold
treatment failed (5.3%) There was a statistically significant improvement
in the MOCART precentage scores. The repair tissue filled most of
the defect sufficiently. We found subchondral laminar changes in all
patients. Intralesional osteophytes were found in two patients (5.3%).
We conclude that this one-step scaffold-based technique can be used
for osteochondral repair. The surgical technique is straightforward,
and the clinical results are promising. The MRI aspects of the repair
tissue continue to evolve during the first two years after surgery.
However, the subchondral laminar and bone changes are a concern. Cite this article:
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
Damage to the cartilage of the distal radioulnar
joint frequently leads to pain and limitation of movement, therefore repair
of this joint cartilage would be highly desirable. The purpose of
this study was to investigate the fixation of scaffold in cartilage
defects of this joint as part of matrix-assisted regenerative autologous
cartilage techniques. Two techniques of fixation of collagen scaffolds,
one involving fibrin glue alone and one with fibrin glue and sutures, were
compared in artificially created cartilage defects of the distal
radioulnar joint in a human cadaver. After being subjected to continuous
passive rotation, the methods of fixation were evaluated for cover
of the defect and pull out force. No statistically significant differences were found between the
two techniques for either cover of the defect or integrity of the
scaffold. However, a significantly increased mean pull out force
was found for the combined procedure, 0.665 N (0.150 to 1.160) This suggests that although successful fixation of a collagen
type I/III scaffold in a distal radioulnar joint cartilage defect
is feasible with both forms of fixation, fixation with glue and
sutures is preferable. Cite this article:
The ability of mesenchymal stem cells (MSCs)
to differentiate Despite their increasing application in clinical trials, the
origin and role of MSCs in the development, repair and regeneration
of organs have remained unclear. Until recently, MSCs could only
be isolated in a process that requires culture in a laboratory;
these cells were being used for tissue engineering without understanding
their native location and function. MSCs isolated in this indirect
way have been used in clinical trials and remain the reference standard
cellular substrate for musculoskeletal engineering. The therapeutic
use of autologous MSCs is currently limited by the need for In this annotation we provide an update on the recent developments
in the understanding of the identity of MSCs within tissues and
outline how this may affect their use in orthopaedic surgery in
the future. Cite this article:
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
The management of failed autologous chondrocyte
implantation (ACI) and matrix-assisted autologous chondrocyte implantation
(MACI) for the treatment of symptomatic osteochondral defects in
the knee represents a major challenge. Patients are young, active
and usually unsuitable for prosthetic replacement. This study reports
the results in patients who underwent revision cartilage transplantation
of their original ACI/MACI graft for clinical or graft-related failure.
We assessed 22 patients (12 men and 10 women) with a mean age of
37.4 years (18 to 48) at a mean of 5.4 years (1.3 to 10.9). The
mean period between primary and revision grafting was 46.1 months
(7 to 89). The mean defect size was 446.6 mm2 (150 to
875) and they were located on 11 medial and two lateral femoral condyles,
eight patellae and one trochlea. The mean modified Cincinnati knee score improved from 40.5 (16
to 77) pre-operatively to 64.9 (8 to 94) at their most recent review
(p <
0.001). The visual analogue pain score improved from 6.1
(3 to 9) to 4.7 (0 to 10) (p = 0.042). A total of 14 patients (63%)
reported an ‘excellent’ (n = 6) or ‘good’ (n = 8) clinical outcome,
5 ‘fair’ and one ‘poor’ outcome. Two patients underwent patellofemoral
joint replacement. This study demonstrates that revision cartilage
transplantation after primary ACI and MACI can yield acceptable
functional results and continue to preserve the joint. Cite this article:
This multicentre prospective clinical trial aimed
to determine whether early administration of alendronate (ALN) delays
fracture healing after surgical treatment of fractures of the distal
radius. The study population comprised 80 patients (four men and
76 women) with a mean age of 70 years (52 to 86) with acute fragility
fractures of the distal radius requiring open reduction and internal
fixation with a volar locking plate and screws. Two groups of 40 patients
each were randomly allocated either to receive once weekly oral
ALN administration (35 mg) within a few days after surgery and continued
for six months, or oral ALN administration delayed until four months
after surgery. Postero-anterior and lateral radiographs of the affected
wrist were taken monthly for six months after surgery. No differences
between groups was observed with regard to gender (p = 1.0), age
(p = 0.916), fracture classification (p = 0.274) or bone mineral
density measured at the spine (p = 0.714). The radiographs were
assessed by three independent assessors. There were no significant
differences in the mean time to complete cortical bridging observed
between the ALN group (3.5 months ( Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article:
We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.
Smoking is known to have an adverse effect on wound healing and musculoskeletal conditions. This case-controlled study looked at whether smoking has a deleterious effect in the outcome of autologous chondrocyte implantation for the treatment of full thickness chondral defects of the knee. The mean Modified Cincinatti Knee score was statistically significantly lower in smokers (n = 48) than in non-smokers (n = 66) both before and after surgery (p <
0.05). Smokers experienced significantly less improvement in the knee score two years after surgery (p <
0.05). Graft failures were only seen in smokers (p = 0.016). There was a strong negative correlation between the number of cigarettes smoked and the outcome following surgery (Pearson’s correlation coefficient −0.65, p = 0.004). These results suggest that patients who smoke have worse pre-operative function and obtain less benefit from this procedure than non-smokers. The counselling of patients undergoing autologous chondrocyte implantation should include smoking, not only as a general cardiopulmonary risk but also because poorer results can be expected in smokers following this procedure.