Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).Aims
Methods
The aim was to assess whether robotic-assisted total knee arthroplasty (rTKA) had greater knee-specific outcomes, improved fulfilment of expectations, health-related quality of life (HRQoL), and patient satisfaction when compared with manual TKA (mTKA). A randomized controlled trial was undertaken (May 2019 to December 2021), and patients were allocated to either mTKA or rTKA. A total of 100 patients were randomized, 50 to each group, of whom 43 rTKA and 38 mTKA patients were available for review at 12 months following surgery. There were no statistically significant preoperative differences between the groups. The minimal clinically important difference in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score was defined as 7.5 points.Aims
Methods
Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation. A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707).Aims
Methods
Total hip and knee arthroplasty (THA, TKA) are largely successful procedures; however, both have variable outcomes, resulting in some patients being dissatisfied with the outcome. Surgeons are turning to technologies such as robotic-assisted surgery in an attempt to improve outcomes. Robust studies are needed to find out if these innovations are really benefitting patients. The Robotic Arthroplasty Clinical and Cost Effectiveness Randomised Controlled Trials (RACER) trials are multicentre, patient-blinded randomized controlled trials. The patients have primary osteoarthritis of the hip or knee. The operation is Mako-assisted THA or TKA and the control groups have operations using conventional instruments. The primary clinical outcome is the Forgotten Joint Score at 12 months, and there is a built-in analysis of cost-effectiveness. Secondary outcomes include early pain, the alignment of the components, and medium- to long-term outcomes. This annotation outlines the need to assess these technologies and discusses the design and challenges when conducting such trials, including surgical workflows, isolating the effect of the operation, blinding, and assessing the learning curve. Finally, the future of
The aim of this study was to compare the clinical outcomes of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) during the first six weeks and at one year postoperatively. A per protocol analysis of 76 patients, 43 of whom underwent TKA and 34 of whom underwent bi-UKA, was performed from a prospective, single-centre, randomized controlled trial. Diaries kept by the patients recorded pain, function, and the use of analgesics daily throughout the first week and weekly between the second and sixth weeks. Patient-reported outcome measures (PROMs) were compared preoperatively, and at three months and one year postoperatively. Data were also compared longitudinally and a subgroup analysis was conducted, stratified by preoperative PROM status.Aims
Methods
Aims. Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs. Methods. The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either
The aims of this systematic review were to assess the learning curve of semi-active robotic arm-assisted total hip arthroplasty (rTHA), and to compare the accuracy, patient-reported functional outcomes, complications, and survivorship between rTHA and manual total hip arthroplasty (mTHA). Searches of PubMed, Medline, and Google Scholar were performed in April 2020 in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. Search terms included “robotic”, “hip”, and “arthroplasty”. The criteria for inclusion were published clinical research articles reporting the learning curve for rTHA (robotic arm-assisted only) and those comparing the implantation accuracy, functional outcomes, survivorship, or complications with mTHA.Aims
Methods
Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction. A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the accuracy of the variables collected, the ability of the algorithm to collect the correct information when it was indeed in the note (sensitivity), and the ability of the algorithm to not collect a certain data element when it was not in the note (specificity).Aims
Methods
The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA) planning and to determine the value of a formal radiologist’s report of these studies. We reviewed 194 CT reports of 176 sequential patients who underwent primary RATKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might change the management of the patient. Payments for the scans, including the technical and professional components, for 330 patients at two hospitals were also recorded and compared.Aims
Methods
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of
With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety. Cite this article:
There has been a significant reduction in unicompartmental knee arthroplasty (UKA) procedures recorded in Australia. This follows several national joint registry studies documenting high UKA revision rates when compared to total knee arthroplasty (TKA). With the recent introduction of robotically assisted UKA procedures, it is hoped that outcomes improve. This study examines the cumulative revision rate of UKA procedures implanted with a newly introduced robotic system and compares the results to one of the best performing non-robotically assisted UKA prostheses, as well as all other non-robotically assisted UKA procedures. Data from the Australian Orthopaedic Association National Joint Arthroplasty Registry (AOANJRR) for all UKA procedures performed for osteoarthritis (OA) between 2015 and 2018 were analyzed. Procedures using the Restoris MCK UKA prosthesis implanted using the Mako Robotic-Arm Assisted System were compared to non-robotically assisted Zimmer Unicompartmental High Flex Knee System (ZUK) UKA, a commonly used UKA with previously reported good outcomes and to all other non-robotically assisted UKA procedures using Cox proportional hazard ratios (HRs) and Kaplan-Meier estimates of survivorship.Aim
Methods