In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA). Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups.Aims
Methods
Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF. Cite this article:
Debate continues regarding the optimum management of periprosthetic distal femoral fractures (PDFFs). This study aims to determine which operative treatment is associated with the lowest perioperative morbidity and mortality when treating low (Su type II and III) PDFFs comparing lateral locking plate fixation (LLP-ORIF) or distal femoral arthroplasty (DFA). This was a retrospective cohort study of 60 consecutive unilateral (PDFFs) of Su types II (40/60) and III (20/60) in patients aged ≥ 60 years: 33 underwent LLP-ORIF (mean age 81.3 years (SD 10.5), BMI 26.7 (SD 5.5); 29/33 female); and 27 underwent DFA (mean age 78.8 years (SD 8.3); BMI 26.7 (SD 6.6); 19/27 female). The primary outcome measure was reoperation. Secondary outcomes included perioperative complications, calculated blood loss, transfusion requirements, functional mobility status, length of acute hospital stay, discharge destination and mortality. Kaplan-Meier survival analysis was performed. Cox multivariate regression analysis was performed to identify risk factors for reoperation after LLP-ORIF.Aims
Methods
The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.Aims
Methods
This exploratory randomized controlled trial (RCT) aimed to determine the splint-related outcomes when using the novel biodegradable wood-composite splint (Woodcast) compared to standard synthetic fibreglass (Dynacast) for the immobilization of undisplaced upper limb fractures in children. An exploratory RCT was performed at a tertiary paediatric referral hospital between 1 June 2018 and 30 September 2019. The intention-to-treat population consisted of 170 patients (mean age 8.42 years (SD 3.42); Woodcast (WCG), n = 84, 57 male (67.9%); Dynacast (DNG), n = 86, 58 male (67.4%)). Patients with undisplaced upper limb fractures were randomly assigned to WCG or DNG treatment groups. Primary outcome was the stress stability of the splint material, defined as absence of any deformations or fractures within the splint during study period. Secondary outcomes included patient satisfaction and medical staff opinion. Additionally, biomechanical and chemical analysis of the splint samples was carried out.Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
Aims. The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical in vitro model. Materials and Methods. A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an in vitro model using paired fresh frozen cadaveric femora. Results. The prevalence of early revision for periprosthetic fracture was 0.34% (1180/337 647) and 44.0% (520/1180) occurred within 90 days of surgery. Implant risk factors included: collarless stem, non-grit-blasted finish, and triple-tapered design. In the in vitro model, a medial calcar collar consistently improved the stability and resistance to fracture. Conclusion. Analysis of features of stem design in registry data is a useful method of identifying implant characteristics that affect the risk of early periprosthetic fracture around a cementless femoral stem. A collar on the calcar reduced the risk of an early periprosthetic fracture and this was confirmed by
The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants. Cite this article: Abstract
The traditional transosseus flexor hallucis longus (FHL) tendon
transfer for patients with Achilles tendinopathy requires two incisions
to harvest a long tendon graft. The use of a bio-tenodesis screw
enables a short graft to be used and is less invasive, but lacks
supporting evidence about its biomechanical behaviour. We aimed,
in this study, to compare the strength of the traditional transosseus
tendon-to-tendon fixation with tendon-to-bone fixation using a tenodesis
screw, in cyclical loading and ultimate load testing. Tendon grafts were undertaken in 24 paired lower-leg specimens
and randomly assigned in two groups using fixation with a transosseus
suture (suture group) or a tenodesis screw (screw group). The biomechanical
behaviour was evaluated using cyclical and ultimate loading tests.
The Student’s Aims
Materials and Methods
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
The aim of this study was to investigate the effect of a posterior
malleolar fragment (PMF), with <
25% ankle joint surface, on
pressure distribution and joint-stability. There is still little
scientific evidence available to advise on the size of PMF, which
is essential to provide treatment. To date, studies show inconsistent
results and recommendations for surgical treatment date from 1940. A total of 12 cadaveric ankles were assigned to two study groups.
A trimalleolar fracture was created, followed by open reduction
and internal fixation. PMF was fixed in Group I, but not in Group
II. Intra-articular pressure was measured and cyclic loading was
performed.Aims
Materials and Methods
To assess the effect of high tibial and distal femoral osteotomies
(HTO and DFO) on the pressure characteristics of the ankle joint. Varus and valgus malalignment of the knee was simulated in human
cadaver full-length legs. Testing included four measurements: baseline
malalignment, 5° and 10° re-aligning osteotomy, and control baseline
malalignment. For HTO, testing was rerun with the subtalar joint
fixed. In order to represent half body weight, a 300 N force was applied
onto the femoral head. Intra-articular sensors captured ankle pressure.Aims
Materials and Methods
Chronic osteomyelitis may recur if dead space management, after
excision of infected bone, is inadequate. This study describes the
results of a strategy for the management of deep bone infection
and evaluates a new antibiotic-loaded biocomposite in the eradication
of infection from bone defects. We report a prospective study of 100 patients with chronic osteomyelitis,
in 105 bones. Osteomyelitis followed injury or surgery in 81 patients.
Nine had concomitant septic arthritis. 80 patients had comorbidities
(Cierny-Mader (C-M) Class B hosts). Ten had infected nonunions. All patients were treated by a multidisciplinary team with a
single-stage protocol including debridement, multiple sampling,
culture-specific systemic antibiotics, stabilisation, dead space
filling with the biocomposite and primary skin closure. Aims
Patients and Methods
Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. A total of 12 osteoporotic human cadaveric spines (T11-L3) were
randomised by bone mineral density into two groups and instrumented
with pedicle screws: group I (SHORT) separated T12 or L2 and group
II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were
augmented with cement unilaterally in each vertebra. Fatigue testing
was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz)
load with stepwise increasing peak force.Aims
Materials and Methods
Dislocation of the acromioclavicular joint is
a relatively common injury and a number of surgical interventions
have been described for its treatment. Recently, a synthetic ligament
device has become available and been successfully used, however,
like other non-native solutions, a compromise must be reached when
choosing non-anatomical locations for their placement. This cadaveric
study aimed to assess the effect of different clavicular anchorage points
for the Lockdown device on the reduction of acromioclavicular joint
dislocations, and suggest an optimal location. We also assessed
whether further stability is provided using a coracoacromial ligament
transfer (a modified Neviaser technique). The acromioclavicular
joint was exposed on seven fresh-frozen cadaveric shoulders. The
joint was reconstructed using the Lockdown implant using four different
clavicular anchorage points and reduction was measured. The coracoacromial
ligament was then transferred to the lateral end of the clavicle,
and the joint re-assessed. If the Lockdown ligament was secured
at the level of the conoid tubercle, the acromioclavicular joint
could be reduced anatomically in all cases. If placed medial or
2 cm lateral, the joint was irreducible. If the Lockdown was placed
1 cm lateral to the conoid tubercle, the joint could be reduced
with difficulty in four cases. Correct placement of the Lockdown
device is crucial to allow anatomical joint reduction. Even when the
Lockdown was placed over the conoid tubercle, anterior clavicle
displacement remained but this could be controlled using a coracoacromial
ligament transfer. Cite this article:
There is an increased risk of fracture following
osteoplasty of the femoral neck for cam-type femoroacetabular impingement
(FAI). Resection of up to 30% of the anterolateral head–neck junction
has previously been considered to be safe, however, iatrogenic fractures
have been reported with resections within these limits. We re-evaluated
the amount of safe resection at the anterolateral femoral head–neck
junction using a biomechanically consistent model. In total, 28 composite bones were studied in four groups: control,
10% resection, 20% resection and 30% resection. An axial load was
applied to the adducted and flexed femur. Peak load, deflection
at time of fracture and energy to fracture were assessed using comparison
groups. There was a marked difference in the mean peak load to fracture
between the control group and the 10% resection group (p <
0.001).
The control group also tolerated significantly more deflection before
failure (p <
0.04). The mean peak load (p = 0.172), deflection
(p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between
the 10%, 20%, and 30% resection groups. Any resection of the anterolateral quadrant of the femoral head–neck
junction for FAI significantly reduces the load-bearing capacity
of the proximal femur. After initial resection of cortical bone,
there is no further relevant loss of stability regardless of the
amount of trabecular bone resected. Based on our findings we recommend any patients who undergo anterolateral
femoral head–neck junction osteoplasty should be advised to modify
their post-operative routine until cortical remodelling occurs to
minimise the subsequent fracture risk. Cite this article:
End caps are intended to prevent nail migration
(push-out) in elastic stable intramedullary nailing. The aim of
this study was to investigate the force at failure with and without
end caps, and whether different insertion angles of nails and end caps
would alter that force at failure. Simulated oblique fractures of the diaphysis were created in
15 artificial paediatric femurs. Titanium Elastic Nails with end
caps were inserted at angles of 45°, 55° and 65° in five specimens
for each angle to create three study groups. Biomechanical testing
was performed with axial compression until failure. An identical
fracture was created in four small adult cadaveric femurs harvested
from two donors (both female, aged 81 and 85 years, height 149 cm and
156 cm, respectively). All femurs were tested without and subsequently
with end caps inserted at 45°. In the artificial femurs, maximum force was not significantly
different between the three groups (p = 0.613). Push-out force was
significantly higher in the cadaveric specimens with the use of
end caps by an up to sixfold load increase (830 N, standard deviation
(SD) 280 These results indicate that the nail and end cap insertion angle
can be varied within 20° without altering construct stability and
that the risk of elastic stable intramedullary nailing push–out
can be effectively reduced by the use of end caps. Cite this article:
It is becoming increasingly common for a patient
to have ipsilateral hip and knee replacements. The inter-prosthetic (IP)
distance, the distance between the tips of hip and knee prostheses,
has been thought to be associated with an increased risk of IP fracture.
Small gap distances are generally assumed to act as stress risers,
although there is no real biomechanical evidence to support this. The purpose of this study was to evaluate the influence of IP
distance, cortical thickness and bone mineral density on the likelihood
of an IP femoral fracture. A total of 18 human femur specimens were randomised into three
groups by bone density and cortical thickness. For each group, a
defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing
the appropriate lengths of component. The maximum fracture strength
was determined using a four-point bending test. The fracture force of all three groups was similar (p = 0.498).
There was a highly significant correlation between the cortical
area and the fracture strength (r = 0.804, p <
0.001), whereas
bone density showed no influence. This study suggests that the IP distance has little influence
on fracture strength in IP femoral fractures: the thickness of the
cortex seems to be the decisive factor. Cite this article: