Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered. Cite this article:
Aims
Patients and Methods
This article presents a unified clinical theory
that links established facts about the physiology of bone and homeostasis,
with those involved in the healing of fractures and the development
of nonunion. The key to this theory is the concept that the tissue
that forms in and around a fracture should be considered a specific
functional entity. This ‘bone-healing unit’ produces a physiological
response to its biological and mechanical environment, which leads
to the normal healing of bone. This tissue responds to mechanical
forces and functions according to Wolff’s law, Perren’s strain theory
and Frost’s concept of the “mechanostat”. In response to the local
mechanical environment, the bone-healing unit normally changes with
time, producing different tissues that can tolerate various levels
of strain. The normal result is the formation of bone that bridges
the fracture – healing by callus. Nonunion occurs when the bone-healing
unit fails either due to mechanical or biological problems or a
combination of both. In clinical practice, the majority of nonunions
are due to mechanical problems with instability, resulting in too
much strain at the fracture site. In most nonunions, there is an
intact bone-healing unit. We suggest that this maintains its biological
potential to heal, but fails to function due to the mechanical conditions.
The theory predicts the healing pattern of multifragmentary fractures
and the observed morphological characteristics of different nonunions.
It suggests that the majority of nonunions will heal if the correct
mechanical environment is produced by surgery, without the need
for biological adjuncts such as autologous bone graft. Cite this article:
The ageing population and an increase in both
the incidence and prevalence of cancer pose a healthcare challenge, some
of which is borne by the orthopaedic community in the form of osteoporotic
fractures and metastatic bone disease. In recent years there has
been an increasing understanding of the pathways involved in bone
metabolism relevant to osteoporosis and metastases in bone. Newer
therapies may aid the management of these problems. One group of
drugs, the antibody mediated anti-resorptive therapies (AMARTs)
use antibodies to block bone resorption pathways. This review seeks
to present a synopsis of the guidelines, pharmacology and potential pathophysiology
of AMARTs and other new anti-resorptive drugs. We evaluate the literature relating to AMARTs and new anti-resorptives
with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for
Nuclear Factor Kappa-B Ligand. It is the first AMART approved by
the National Institute for Health and Clinical Excellence and the
US Food and Drug Administration. Other novel anti-resorptives awaiting
approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and
prevention of the complications of bone metastases. Recent evidence
suggests, however, that denosumab may have an adverse event profile
similar to bisphosphonates, including atypical femoral fractures.
It is, therefore, essential that orthopaedic surgeons are conversant
with these medications and their safe usage. Take home message: Denosumab has important orthopaedic indications
and has been shown to significantly reduce patient morbidity in
osteoporosis and metastatic bone disease. Cite this article:
We evaluated the impact of lumbar instrumented
circumferential fusion on the development of adjacent level vertebral
compression fractures (VCFs). Instrumented posterior lumbar interbody
fusion (PLIF) has become a popular procedure for degenerative lumbar
spine disease. The immediate rigidity produced by PLIF may cause
more stress and lead to greater risk of adjacent VCFs. However,
few studies have investigated the relationship between PLIF and
the development of subsequent adjacent level VCFs. Between January 2005 and December 2009, a total of 1936 patients
were enrolled. Of these 224 patients had a new VCF and the incidence
was statistically analysed with other covariants. In total 150 (11.1%)
of 1348 patients developed new VCFs with PLIF, with 108 (72%) cases
at adjacent segment. Of 588 patients, 74 (12.5%) developed new subsequent
VCFs with conventional posterolateral fusion (PLF), with 37 (50%)
patients at an adjacent level. Short-segment fusion, female and
age older than 65 years also increased the development of new adjacent
VCFs in patients undergoing PLIF. In the osteoporotic patient, more
rigid fusion and a higher stress gradient after PLIF will cause
a higher adjacent VCF rate. Cite this article:
We describe the impact of a targeted performance
improvement programme and the associated performance improvement
interventions, on mortality rates, error rates and process of care
for haemodynamically unstable patients with pelvic fractures. Clinical
care and performance improvement data for 185 adult patients with exsanguinating
pelvic trauma presenting to a United Kingdom Major Trauma Centre
between January 2007 and January 2011 were analysed with univariate
and multivariate regression and compared with National data. In
total 62 patients (34%) died from their injuries and opportunities
for improved care were identified in one third of deaths. Three major interventions were introduced during the study period
in response to the findings. These were a massive haemorrhage protocol,
a decision-making algorithm and employment of specialist pelvic
orthopaedic surgeons. Interventions which improved performance were
associated with an annual reduction in mortality (odds ratio 0.64
(95% confidence interval (CI) 0.44 to 0.93), p = 0.02), a reduction
in error rates (p = 0.024) and significant improvements in the targeted
processes of care. Exsanguinating patients with pelvic trauma are
complex to manage and are associated with high mortality rates;
implementation of a targeted performance improvement programme achieved
sustained improvements in mortality, error rates and trauma care
in this group of severely injured patients. Cite this article:
We describe the technique and results of medial
submuscular plating of the femur in paediatric patients and discuss its
indications and limitations. Specifically, the technique is used
as part of a plate-after-lengthening strategy, where the period
of external fixation is reduced and the plate introduced by avoiding
direct contact with the lateral entry wounds of the external fixator
pins. The technique emphasises that vastus medialis is interposed
between the plate and the vascular structures. A total of 16 patients (11 male and five female, mean age 9.6
years (5 to 17)), had medial submuscular plating of the femur. All
underwent distraction osteogenesis of the femur with a mean lengthening
of 4.99 cm (3.2 to 12) prior to plating. All patients achieved consolidation
of the regenerate without deformity. The mean follow-up was 10.5 months
(7 to 15) after plating for those with plates still Placing the plate on the medial side is advantageous when the
external fixator is present on the lateral side, and is biomechanically
optimal in the presence of a femoral defect. We conclude that medial
femoral submuscular plating is a useful technique for specific indications
and can be performed safely with a prior understanding of the regional
anatomy. Cite this article:
The AO Foundation advocates the use of partially
threaded lag screws in the fixation of fractures of the medial malleolus.
However, their threads often bypass the radiodense physeal scar
of the distal tibia, possibly failing to obtain more secure purchase
and better compression of the fracture. We therefore hypothesised that the partially threaded screws
commonly used to fix a medial malleolar fracture often provide suboptimal
compression as a result of bypassing the physeal scar, and proposed
that better compression of the fracture may be achieved with shorter
partially threaded screws or fully threaded screws whose threads
engage the physeal scar. We analysed compression at the fracture site in human cadaver
medial malleoli treated with either 30 mm or 45 mm long partially
threaded screws or 45 mm fully threaded screws. The median compression
at the fracture site achieved with 30 mm partially threaded screws
(0.95 kg/cm2 (interquartile range (IQR) 0.8 to 1.2) and
45 mm fully threaded screws
(1.0 kg/cm2 (IQR 0.7 to 2.8)) was significantly higher
than that achieved with 45 mm partially threaded screws (0.6 kg/cm2 (IQR
0.2 to 0.9)) (p = 0.04 and p <
0.001, respectively). The fully
threaded screws and the 30mm partially threaded screws were seen
to engage the physeal scar under an image intensifier in each case. The results support the use of 30 mm partially threaded or 45
mm fully threaded screws that engage the physeal scar rather than
longer partially threaded screws that do not. A
45 mm fully threaded screw may in practice offer additional benefit
over 30 mm partially threaded screws in increasing the thread count
in the denser paraphyseal region. Cite this article:
Compression and absolute stability are important in the management of intra-articular fractures. We compared tension band wiring with plate fixation for the treatment of fractures of the olecranon by measuring compression within the fracture. Identical transverse fractures were created in models of the ulna. Tension band wires were applied to ten fractures and ten were fixed with Acumed plates. Compression was measured using a Tekscan force transducer within the fracture gap. Dynamic testing was carried out by reproducing cyclical contraction of the triceps of 20 N and of the brachialis of 10 N. Both methods were tested on each sample. Paired The mean compression for plating was 819 N ( During simulated movements, the mean compression was reduced in both groups, with tension band wiring at −14 N ( Pre-contoured plates provide significantly greater compression than tension bands in the treatment of transverse fractures of the olecranon, both over the whole fracture and specifically at the articular side of the fracture. In tension band wiring the overall compression was reduced and articular compression remained negligible during simulated contraction of the triceps, challenging the tension band principle.
Fractures of the proximal interphalangeal joint include a wide spectrum of injuries, from stable avulsion fractures to complex fracture-dislocations. Stability of the joint is paramount in determining the appropriate treatment, which should aim to facilitate early mobilisation and restoration of function.
We report three cases of spontaneous healing of aneurysmal bone cysts (ABC). In one case histological material was obtained after resection of the already ossified expansile mass discovered as a lytic lesion seven months previously. In the two other patients, spontaneous ossification of a radiologically presumed ABC in the lytic and expansile phase was observed after nine and seven months respectively. The healed lesions have remained stable at 12, 32, and 36 months respectively. These findings suggest that when the diagnosis can be made with confidence, and the lesion is in a location and at a stage that does not entail any risk of