Periprosthetic femoral fractures (PFF) following total hip arthroplasty
(THA) are devastating complications that are associated with functional
limitations and increased overall mortality. Although cementless
implants have been associated with an increased risk of PFF, the
precise contribution of implant geometry and design on the risk
of both intra-operative and post-operative PFF remains poorly investigated.
A systematic review was performed to aggregate all of the PFF literature
with specific attention to the femoral implant used. A systematic search strategy of several journal databases and
recent proceedings from the American Academy of Orthopaedic Surgeons
was performed. Clinical articles were included for analysis if sufficient
implant description was provided. All articles were reviewed by
two reviewers. A review of fundamental investigations of implant
load-to-failure was performed, with the intent of identifying similar
conclusions from the clinical and fundamental literature.Aims
Patients and Methods
We describe two cases of fracture of Corin Taper-Fit stems used for cement-in-cement revision of congenital dysplasia of the hip. Both prostheses were implanted in patients in their 50s, with high offsets (+7.5 mm and +3.5 mm), one with a large diameter (48 mm) head and one with a constrained acetabular component. Fracture of the stems took place at nine months and three years post-operatively following low-demand activity. Both fractures occurred at the most medial of the two stem introducer holes in the neck of the prosthesis, a design feature that is unique to the Taper-Fit stem. We would urge caution in the use of these particular stems for cement-in-cement revisions.
Total hip replacement using porous-coated cobalt-chrome