Advertisement for orthosearch.org.uk
Results 1 - 20 of 70
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 915 - 921
1 Aug 2022
Marya S Tambe AD Millner PA Tsirikos AI

Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients.

Cite this article: Bone Joint J 2022;104-B(8):915–921.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 53 - 58
1 Jan 2019
Billi F Kavanaugh A Schmalzried H Schmalzried TP

Aims

Loosening of the tibial component after total knee arthroplasty (TKA) is a common indication for revision. Increasing the strength of the initial tibial implant/cement interface is desirable. There is little information about the surgical techniques that lead to the highest strength. We investigated the effects of eight variables on the strength of the initial tibial baseplate/cement interface.

Materials and Methods

A total of 48 tibial trays were cemented into acrylic holders using cement from two manufacturers, at three different times (early, normal, and late) using two techniques: cementing the tibial plateau or the plateau and the keel; and involving two conditions of contamination with marrow fat (at the metal/cement and cement/cement interfaces). Push-out tests were performed with load continuously recorded.


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1455 - 1462
1 Nov 2018
Munro JT Millar JS Fernandez JW Walker CG Howie DW Shim VB

Aims

Osteolysis, secondary to local and systemic physiological effects, is a major challenge in total hip arthroplasty (THA). While osteolytic defects are commonly observed in long-term follow-up, how such lesions alter the distribution of stress is unclear. The aim of this study was to quantitatively describe the biomechanical implication of such lesions by performing subject-specific finite-element (FE) analysis on patients with osteolysis after THA.

Patients and Methods

A total of 22 hemipelvis FE models were constructed in order to assess the transfer of load in 11 patients with osteolysis around the acetabular component of a THA during slow walking and a fall onto the side. There were nine men and two women. Their mean age was 69 years (55 to 81) at final follow-up. Changes in peak stress values and loads to fracture in the presence of the osteolytic defects were measured.


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 884 - 891
1 Jul 2016
Elliott DS Newman KJH Forward DP Hahn DM Ollivere B Kojima K Handley R Rossiter ND Wixted JJ Smith RM Moran CG

This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This ‘bone-healing unit’ produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff’s law, Perren’s strain theory and Frost’s concept of the “mechanostat”. In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture – healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft.

Cite this article: Bone Joint J 2016;98-B:884–91.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 166 - 172
1 Feb 2016
Langlois J Hamadouche M

Previous standards for assessing the reliability of a measurement tool have lacked consistency. We reviewed the most current American Society for Testing and Materials and International Organisation for Standardisation (ISO) recommendations, and propose an algorithm for orthopaedic surgeons. When assessing a measurement tool, conditions of the experimental set-up and clear formulae used to compile the results should be strictly reported. According to these recent guidelines, accuracy is a confusing word with an overly broad meaning and should therefore be abandoned. Depending on the experimental conditions, one should be referring to bias (when the study protocol involves accepted reference values), and repeatability (sr, r) or reproducibility (SR, R). In the absence of accepted reference values, only repeatability (sr, r) or reproducibility (SR, R) should be provided.

Take home message: Assessing the reliability of a measurement tool involves reporting bias, repeatability and/or reproducibility depending on the defined conditions, instead of precision or accuracy.

Cite this article: Bone Joint J 2016;98-B2:166–72.


The Bone & Joint Journal
Vol. 97-B, Issue 12 | Pages 1628 - 1633
1 Dec 2015
Elmadag M Uzer G Yildiz F Erden T Bilsel K Büyükpinarbasili N Üsümez A Bozdag E Sen C

This animal study compares different methods of performing an osteotomy, including using an Erbium-doped Yttrium Aluminum Garnet laser, histologically, radiologically and biomechanically. A total of 24 New Zealand rabbits were divided into four groups (Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical saw blade and Group IV: laser). A proximal transverse diaphyseal osteotomy was performed on the right tibias of the rabbits after the application of a circular external fixator. The rabbits were killed six weeks after the procedure, the operated tibias were resected and radiographs taken.

The specimens were tested biomechanically using three-point bending forces, and four tibias from each group were examined histologically. Outcome parameters were the biomechanical stability of the tibias as assessed by the failure to load and radiographic and histological examination of the osteotomy site.

The osteotomies healed in all specimens both radiographically and histologically. The differences in the mean radiographic (p = 0.568) and histological (p = 0.71) scores, and in the mean failure loads (p = 0.180) were not statistically significant between the groups.

Different methods of performing an osteotomy give similar quality of union. The laser osteotomy, which is not widely used in orthopaedics is an alternative to the current methods.

Cite this article: Bone Joint J 2015;97-B:1628–33.


The Bone & Joint Journal
Vol. 97-B, Issue 10_Supple_A | Pages 45 - 48
1 Oct 2015
Lavand'homme P Thienpont E

The patient with a painful arthritic knee awaiting total knee arthroplasty (TKA) requires a multidisciplinary approach. Optimal control of acute post-operative pain and the prevention of chronic persistent pain remains a challenge. The aim of this paper is to evaluate whether stratification of patients can help identify those who are at particular risk for severe acute or chronic pain.

Intense acute post-operative pain, which is itself a risk factor for chronic pain, is more common in younger, obese female patients and those suffering from central pain sensitisation. Pre-operative pain, in the knee or elsewhere in the body, predisposes to central sensitisation. Pain due to osteoarthritis of the knee may also trigger neuropathic pain and may be associated with chronic medication like opioids, leading to a state of nociceptive sensitisation called ‘opioid-induced hyperalgesia’. Finally, genetic and personality related risk factors may also put patients at a higher risk for the development of chronic pain.

Those identified as at risk for chronic pain would benefit from specific peri-operative management including reduction in opioid intake pre-operatively, the peri-operative use of antihyperalgesic drugs such as ketamine and gabapentinoids, and a close post-operative follow-up in a dedicated chronic pain clinic.

Cite this article: Bone Joint J 2015;97-B(10 Suppl A):45–8.


The Bone & Joint Journal
Vol. 97-B, Issue 8 | Pages 1144 - 1151
1 Aug 2015
Waki T Lee SY Niikura T Iwakura T Dogaki Y Okumachi E Kuroda R Kurosaka M

MicroRNAs (miRNAs ) are small non-coding RNAs that regulate gene expression. We hypothesised that the functions of certain miRNAs and changes to their patterns of expression may be crucial in the pathogenesis of nonunion. Healing fractures and atrophic nonunions produced by periosteal cauterisation were created in the femora of 94 rats, with 1:1 group allocation. At post-fracture days three, seven, ten, 14, 21 and 28, miRNAs were extracted from the newly generated tissue at the fracture site. Microarray and real-time polymerase chain reaction (PCR) analyses of day 14 samples revealed that five miRNAs, miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p, were highly upregulated in nonunion. Real-time PCR analysis further revealed that, in nonunion, the expression levels of all five of these miRNAs peaked on day 14 and declined thereafter.

Our results suggest that miR-31a-3p, miR-31a-5p, miR-146a-5p, miR-146b-5p and miR-223-3p may play an important role in the development of nonunion. These findings add to the understanding of the molecular mechanism for nonunion formation and may lead to the development of novel therapeutic strategies for its treatment.

Cite this article: Bone Joint J 2015; 97-B:1144–51.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions.

A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed.

The mean angulation achieved at three weeks was 34.7° (standard deviation (sd) 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (sd 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established.

In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear.

Cite this article: Bone Joint J 2015;97-B:862–8.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 539 - 543
1 Apr 2015
Lawendy A Bihari A Sanders DW McGarr G Badhwar A Cepinskas G

Compartment syndrome, a devastating consequence of limb trauma, is characterised by severe tissue injury and microvascular perfusion deficits. We hypothesised that leucopenia might provide significant protection against microvascular dysfunction and preserve tissue viability. Using our clinically relevant rat model of compartment syndrome, microvascular perfusion and tissue injury were directly visualised by intravital video microscopy in leucopenic animals. We found that while the tissue perfusion was similar in both groups (38.8% (standard error of the mean (sem) 7.1), 36.4% (sem 5.7), 32.0% (sem 1.7), and 30.5% (sem 5.35) continuously-perfused capillaries at 45, 90, 120 and 180 minutes compartment syndrome, respectively versus 39.2% (sem 8.6), 43.5% (sem 8.5), 36.6% (sem 1.4) and 50.8% (sem 4.8) at 45, 90, 120 and 180 minutes compartment syndrome, respectively in leucopenia), compartment syndrome-associated muscle injury was significantly decreased in leucopenic animals (7.0% (sem 2.0), 7.0%, (sem 1.0), 9.0% (sem 1.0) and 5.0% (sem 2.0) at 45, 90, 120 and 180 minutes of compartment syndrome, respectively in leucopenia group versus 18.0% (sem 4.0), 23.0% (sem 4.0), 32.0% (sem 7.0), and 20.0% (sem 5.0) at 45, 90, 120 and 180 minutes of compartment syndrome in control, p = 0.0005). This study demonstrates that the inflammatory process should be considered central to the understanding of the pathogenesis of cellular injury in compartment syndrome.

Cite this article: Bone Joint J 2015;97-B:539–43


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this.

The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture.

A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test.

The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence.

This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor.

Cite this article: Bone Joint J 2014;96-B:1378–84.


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 677 - 683
1 May 2014
Greenberg A Berenstein Weyel T Sosna J Applbaum J Peyser A

Osteoid osteoma is treated primarily by radiofrequency (RF) ablation. However, there is little information about the distribution of heat in bone during the procedure and its safety. We constructed a model of osteoid osteoma to assess the distribution of heat in bone and to define the margins of safety for ablation. Cavities were drilled in cadaver bovine bones and filled with a liver homogenate to simulate the tumour matrix. Temperature-sensing probes were placed in the bone in a radial fashion away from the cavities. RF ablation was performed 107 times in tumours < 10 mm in diameter (72 of which were in cortical bone, 35 in cancellous bone), and 41 times in cortical bone with models > 10 mm in diameter. Significantly higher temperatures were found in cancellous bone than in cortical bone (p <  0.05). For lesions up to 10 mm in diameter, in both bone types, the temperature varied directly with the size of the tumour (p < 0.05), and inversely with the distance from it. Tumours of > 10 mm in diameter showed a trend similar to those of smaller lesions. No temperature rise was seen beyond 12 mm from the edge of a cortical tumour of any size. Formulae were developed to predict the expected temperature in the bone during ablation.

Cite this article: Bone Joint J 2014; 96-B:677–83


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 865 - 874
1 Jul 2012
Mills LA Simpson AHRW

This review is aimed at clinicians appraising preclinical trauma studies and researchers investigating compromised bone healing or novel treatments for fractures. It categorises the clinical scenarios of poor healing of fractures and attempts to match them with the appropriate animal models in the literature.

We performed an extensive literature search of animal models of long bone fracture repair/nonunion and grouped the resulting studies according to the clinical scenario they were attempting to reflect; we then scrutinised them for their reliability and accuracy in reproducing that clinical scenario.

Models for normal fracture repair (primary and secondary), delayed union, nonunion (atrophic and hypertrophic), segmental defects and fractures at risk of impaired healing were identified. Their accuracy in reflecting the clinical scenario ranged greatly and the reliability of reproducing the scenario ranged from 100% to 40%.

It is vital to know the limitations and success of each model when considering its application.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 179 - 184
1 Feb 2012
Sutter M Hersche O Leunig M Guggi T Dvorak J Eggspuehler A

Peripheral nerve injury is an uncommon but serious complication of hip surgery that can adversely affect the outcome. Several studies have described the use of electromyography and intra-operative sensory evoked potentials for early warning of nerve injury. We assessed the results of multimodal intra-operative monitoring during complex hip surgery. We retrospectively analysed data collected between 2001 and 2010 from 69 patients who underwent complex hip surgery by a single surgeon using multimodal intra-operative monitoring from a total pool of 7894 patients who underwent hip surgery during this period. In 24 (35%) procedures the surgeon was alerted to a possible lesion to the sciatic and/or femoral nerve. Alerts were observed most frequently during peri-acetabular osteotomy. The surgeon adapted his approach based on interpretation of the neurophysiological changes. From 69 monitored surgical procedures, there was only one true positive case of post-operative nerve injury. There were no false positives or false negatives, and the remaining 68 cases were all true negative. The sensitivity for predicting post-operative nerve injury was 100% and the specificity 100%. We conclude that it is possible and appropriate to use this method during complex hip surgery and it is effective for alerting the surgeon to the possibility of nerve injury.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1653 - 1659
1 Dec 2011
Bordei P

Platelet-derived growth factor (PDGF) is known to stimulate osteoblast or osteoprogenitor cell activity. We investigated the effect of locally applied PDGF from poly-d,l-lactide (PDLLA)-coated implants on fracture healing in a rat model. A closed fracture of the right tibia of four-month-old Sprague-Dawley rats (n = 40) was stabilised with implants coated with a biodegradable PDLLA versus implants coated with PDLLA and PDGF. Radiographs were taken throughout the study, and a marker of DNA activity, bromodeoxyuridine (BrdU), was injected before the rats were killed at three, seven and ten days. The radiographs showed consolidation of the callus in the PDGF-treated group compared with the control group at all three time points. In the PDGF-treated group, immunohistochemical staining of BrdU showed that the distribution of proliferating cells in all cellular events was higher after ten days compared with that at three and seven days.

These results indicate that local application of PDGF from biodegradable PDLLA-coated implants significantly accelerates fracture healing in experimental animals. Further development may help fracture healing in the clinical situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 555 - 557
1 Apr 2011
Marchese M Sinisi M Anand P Di Mascio L Humphrey J

A 60-year-old man developed severe neuropathic pain and foot-drop in his left leg following resurfacing arthroplasty of the left hip. The pain was refractory to all analgesics for 16 months. At exploration, a PDS suture was found passing through the sciatic nerve at several points over 6 cm and terminating in a large knot. After release of the suture and neurolysis there was dramatic and rapid improvement of the neuropathic pain and of motor function.

This case represents the human equivalent of previously described nerve ligation in an animal model of neuropathic pain. It emphasises that when neuropathic pain is present after an operation, the nerve related to the symptoms must be inspected, and that removal of a suture or irritant may lead to relief of pain, even after many months.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 558 - 565
1 Apr 2011
Xie X Wang X Zhang G Liu Z Yao D Hung L Hung VW Qin L

Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An in vivo micro-CT scanner was used to monitor healing within the bone tunnel at four, eight and 12 weeks postoperatively. At week 12, the animals were killed for histological and biomechanical analysis. In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 498 - 502
1 Apr 2011
Gwilym SE Oag HCL Tracey I Carr AJ

Impingement syndrome in the shoulder has generally been considered to be a clinical condition of mechanical origin. However, anomalies exist between the pathology in the subacromial space and the degree of pain experienced. These may be explained by variations in the processing of nociceptive inputs between different patients. We investigated the evidence for augmented pain transmission (central sensitisation) in patients with impingement, and the relationship between pre-operative central sensitisation and the outcomes following arthroscopic subacromial decompression.

We recruited 17 patients with unilateral impingement of the shoulder and 17 age- and gender-matched controls, all of whom underwent quantitative sensory testing to detect thresholds for mechanical stimuli, distinctions between sharp and blunt punctate stimuli, and heat pain. Additionally Oxford shoulder scores to assess pain and function, and PainDETECT questionnaires to identify ‘neuropathic’ and referred symptoms were completed. Patients completed these questionnaires pre-operatively and three months post-operatively.

A significant proportion of patients awaiting subacromial decompression had referred pain radiating down the arm and had significant hyperalgesia to punctate stimulus of the skin compared with controls (unpaired t-test, p < 0.0001). These are felt to represent peripheral manifestations of augmented central pain processing (central sensitisation).

The presence of either hyperalgesia or referred pain pre-operatively resulted in a significantly worse outcome from decompression three months after surgery (unpaired t-test, p = 0.04 and p = 0.005, respectively).

These observations confirm the presence of central sensitisation in a proportion of patients with shoulder pain associated with impingement. Also, if patients had relatively high levels of central sensitisation pre-operatively, as indicated by higher levels of punctate hyperalgesia and/or referred pain, the outcome three months after subacromial decompression was significantly worse.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 3 | Pages 409 - 413
1 Mar 2011
McCalden RW Charron KD Davidson RD Teeter MG Holdsworth DW

We present a case of early retrieval of an Oxinium femoral head and corresponding polyethylene liner where there was significant surface damage to the head and polyethylene. The implants were retrieved at the time of revision surgery to correct leg-length discrepancy just 48 hours after the primary hip replacement. Appropriate analysis of the retrieved femoral head demonstrated loss of the Oxinium layer with exposure of the underlying substrate and transfer of titanium from the acetabular shell at the time of a reduction of the index total hip replacement. In addition, the level of damage to the polyethylene was extensive despite only 48 hours in situ.

The purpose of this report is to highlight the care that is required at the time of reduction, especially with these hard femoral counter-faces such as Oxinium. To our knowledge, the damage occurring at the time of reduction has not been previously reported following the retrieval of an otherwise well-functioning hip replacement.