The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods
We have previously reported the mid-term outcomes of revision total knee arthroplasty (TKA) for flexion instability. At a mean of four years, there were no re-revisions for instability. The aim of this study was to report the implant survivorship and clinical and radiological outcomes of the same cohort of of patients at a mean follow-up of ten years. The original publication included 60 revision TKAs in 60 patients which were undertaken between 2000 and 2010. The mean age of the patients at the time of revision TKA was 65 years, and 33 (55%) were female. Since that time, 21 patients died, leaving 39 patients (65%) available for analysis. The cumulative incidence of any re-revision with death as a competing risk was calculated. Knee Society Scores (KSSs) were also recorded, and updated radiographs were reviewed.Aims
Methods
Aims. The purpose of this study was to explore the correlation between femoral torsion and morphology of the distal femoral condyle in patients with trochlear dysplasia and lateral patellar instability. Methods. A total of 90 patients (64 female, 26 male; mean age 22.1 years (SD 7.2)) with lateral patellar dislocation and trochlear dysplasia who were awaiting surgical treatment between January 2015 and June 2019 were retrospectively analyzed. All patients underwent CT scans of the lower limb to assess the femoral torsion and morphology of the distal femur. The femoral torsion at various levels was assessed using the a) femoral anteversion angle (FAA), b) proximal and distal anteversion angle, c) angle of the proximal femoral axis-anatomical
The extensive variation in axial rotation of tibial components can lead to coronal plane malalignment. We analyzed the change in coronal alignment induced by tray malrotation. We constructed a computer model of knee arthroplasty and used a virtual cutting guide to cut the tibia at 90° to the coronal plane. The virtual guide was rotated axially (15° medial to 15° lateral) and with posterior slopes (0° to 7°). To assess the effect of axial malrotation, we measured the coronal plane alignment of a tibial tray that was axially rotated (25° internal to 15° external), as viewed on a standard anteroposterior (AP) radiograph.Aims
Methods
This study aimed to evaluate the association between the sagittal alignment of the femoral component in total knee arthroplasty (TKA) and new Knee Society Score (2011KSS), under the hypothesis that outliers such as the excessive extended or flexed femoral component were related to worse clinical outcomes. A group of 156 knees (134 F:22 M) in 133 patients with a mean age 75.8 years (SD 6.4) who underwent TKA with the cruciate-substituting Bi-Surface Knee prosthesis were retrospectively enrolled. On lateral radiographs, γ angle (the angle between the distal femoral axis and the line perpendicular to the distal rear surface of the femoral component) was measured, and the patients were divided into four groups according to the γ angle. The 2011KSSs among groups were compared using the Kruskal-Wallis test. A secondary regression analysis was used to investigate the association between the 2011KSS and γ angle.Aims
Methods
The primary aim of this study was to compare the knee-specific functional outcome of patellofemoral arthroplasty with total knee arthroplasty (TKA) in the management of patients with patellofemoral osteoarthritis. A total of 54 consecutive Avon patellofemoral arthroplasties were identified and propensity-score-matched to a group of 54 patients undergoing a TKA with patellar resurfacing for patellofemoral osteoarthritis. The Oxford Knee Score (OKS), the 12-Item Short-Form Health Survey (SF-12), and patient satisfaction were collected at a mean follow up of 9.2 years (8 to 15). Survival was defined by revision or intention to revise.Aims
Patients and Methods
Aims
Patients and Methods
The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (Aims
Patients and Methods
In Asia and the Middle-East, people often flex their knees deeply
in order to perform activities of daily living. The purpose of this
study was to investigate the 3D kinematics of normal knees during
high-flexion activities. Our hypothesis was that the femorotibial
rotation, varus-valgus angle, translations, and kinematic pathway
of normal knees during high-flexion activities, varied according
to activity. We investigated the Aims
Materials and Methods
The aim of this study was to investigate differences in pain,
range of movement function and satisfaction at three months and
one year after total knee arthroplasty (TKA) in patients with an
oblique pattern of kinematic graph of the knee and those with a
varus pattern. A total of 91 patients who underwent TKA were included in this
retrospective study. Patients (59 women and 32 men with mean age
of 68.7 years; 38.6 to 88.4) were grouped according to kinematic
graphs which were generated during navigated TKA and the outcomes
between the groups were compared.Aims
Patients and Methods
Our aim was to compare kinematic with mechanical alignment in
total knee arthroplasty (TKA). We performed a prospective blinded randomised controlled trial
to compare the functional outcome of patients undergoing TKA in
mechanical alignment (MA) with those in kinematic alignment (KA).
A total of 71 patients undergoing TKA were randomised to either
kinematic (n = 36) or mechanical alignment (n = 35). Pre- and post-operative
hip-knee-ankle radiographs were analysed. The knee injury and osteoarthritis
outcome score (KOOS), American Knee Society Score, Short Form-36,
Euro-Qol (EQ-5D), range of movement (ROM), two minute walk, and timed
up and go tests were assessed pre-operatively and at six weeks,
three and six months and one year post-operatively.Aims
Patients and Methods
We conducted a randomised controlled trial to assess the accuracy
of positioning and alignment of the components in total knee arthroplasty
(TKA), comparing those undertaken using standard intramedullary
cutting jigs and those with patient-specific instruments (PSI). There were 64 TKAs in the standard group and 69 in the PSI group. The post-operative hip-knee-ankle (HKA) angle and positioning
was investigated using CT scans. Deviation of >
3° from the planned
position was regarded as an outlier. The operating time, Oxford
Knee Scores (OKS) and Short Form-12 (SF-12) scores were recorded.Aims
Patients and Methods
Instability in flexion after total knee replacement
(TKR) typically occurs as a result of mismatched flexion and extension
gaps. The goals of this study were to identify factors leading to
instability in flexion, the degree of correction, determined radiologically,
required at revision surgery, and the subsequent clinical outcomes.
Between 2000 and 2010, 60 TKRs in 60 patients underwent revision
for instability in flexion associated with well-fixed components.
There were 33 women (55%) and 27 men (45%); their mean age was 65
years (43 to 82). Radiological measurements and the Knee Society
score (KSS) were used to assess outcome after revision surgery.
The mean follow-up was 3.6 years (2 to 9.8). Decreased condylar
offset (p <
0.001), distalisation of the joint line (p <
0.001)
and increased posterior tibial slope (p <
0.001) contributed
to instability in flexion and required correction at revision to regain
stability. The combined mean correction of posterior condylar offset
and joint line resection was 9.5 mm, and a mean of 5° of posterior
tibial slope was removed. At the most recent follow-up, there was
a significant improvement in the mean KSS for the knee and function
(both p <
0.001), no patient reported instability and no patient
underwent further surgery for instability. The following step-wise approach is recommended: reduction of
tibial slope, correction of malalignment, and improvement of condylar
offset. Additional joint line elevation is needed if the above steps
do not equalise the flexion and extension gaps. Cite this article:
Ensuring correct rotation of the femoral component
is a challenging aspect of patellofemoral replacement surgery. Rotation
equal to the
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
Obtaining a balanced flexion gap with correct
femoral component rotation is one of the prerequisites for a successful
outcome after total knee replacement (TKR). Different techniques
for achieving this have been described. In this study we prospectively
compared gap-balancing Both groups systematically reproduced a similar external rotation
of the femoral component relative to the surgical transepicondylar
axis: 2.4°
We retrospectively reviewed the records of 1150
computer-assisted total knee replacements and analysed the clinical
and radiological outcomes of 45 knees that had arthritis with a
pre-operative recurvatum deformity. The mean pre-operative hyperextension
deformity of 11° (6° to 15°), as measured by navigation at the start
of the operation, improved to a mean flexion deformity of 3.1° (0°
to 7°) post-operatively. A total of 41 knees (91%) were managed
using inserts ≤ 12.5 mm thick, and none had mediolateral laxity
>
2 mm from a mechanical axis of 0° at the end of the surgery. At
a mean follow-up of 26.4 months (13 to 48) there was significant
improvement in the mean Knee Society, Oxford knee and Western Ontario
and McMaster Universities Osteoarthritis Index scores compared with
the pre-operative values. The mean knee flexion improved from 105°
(80° to 125°) pre-operatively to 131° (120° to 145°), and none of
the limbs had recurrent recurvatum. These early results show that total knee replacement using computer
navigation and an algorithmic approach for arthritic knees with
a recurvatum deformity can give excellent radiological and functional
outcomes without recurrent deformity.
In posterior stabilised total knee replacement
(TKR) a larger femoral component is sometimes selected to manage the
increased flexion gap caused by resection of the posterior cruciate
ligament. However, concerns remain regarding the adverse effect
of the increased anteroposterior dimensions of the femoral component
on the patellofemoral (PF) joint. Meanwhile, the gender-specific
femoral component has a narrower and thinner anterior flange and
is expected to reduce the PF contact force. PF contact forces were
measured at 90°, 120°, 130° and 140° of flexion using the NexGen
Legacy Posterior Stabilized (LPS)-Flex Fixed Bearing Knee system
using Standard, Upsized and Gender femoral components during TKR.
Increasing the size of the femoral component significantly increased
mean PF forces at 120°, 130° and 140° of flexion (p = 0.005, p <
0.001 and p <
0.001, respectively). No difference was found in
contact force between the Gender and the Standard components. Among
the patients who had overhang of the Standard component, mean contact
forces with the Gender component were slightly lower than those
of the Standard component, but no statistical difference was found
at 90°, 120°, 130° or 140° of flexion (p = 0.689, 0.615, 0.253 and
0.248, respectively). Upsized femoral components would increase PF forces in deep knee
flexion. Gender-specific implants would not reduce PF forces.
Complications involving the patellofemoral joint,
caused by malrotation of the femoral component during total knee replacement,
are an important cause of persistent pain and failure leading to
revision surgery. The aim of this study was to determine and quantify
the influence of femoral component malrotation on patellofemoral
wear, and to determine whether or not there is a difference in the
rate of wear of the patellar component when articulated against
oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An The results suggest that patellar maltracking due to an internally
rotated femoral component leads to an increased mean patellar wear.
Although not statistically significant, the mean wear production
may be lower for OxZr than for CoCr components.
The role of computer-assisted surgery in maintaining the level of the joint in primary knee joint replacement (TKR) has not been well defined. We undertook a blinded randomised controlled trial comparing joint-line maintenance, functional outcomes, and quality-of-life outcomes between patients undergoing computer-assisted and conventional TKR. A total of 115 patients were randomised (computer-assisted, n = 55; conventional, n = 60). Two years post-operatively no significant correlation was found between computer-assisted and conventional surgery in terms of maintaining the joint line. Those TKRs where the joint line was depressed post-operatively improved the least in terms of functional scores. No difference was detected in terms of quality-of-life outcomes. Change in joint line was found to be related to change in alignment. Change in alignment significantly affects change in joint line and functional scores.