Benefits of early stabilization of femoral shaft fractures, in mitigation of pulmonary and other complications, have been recognized over the past decades. Investigation into the appropriate level of resuscitation, and other measures of readiness for definitive fixation, versus a damage control strategy have been ongoing. These principles are now being applied to fractures of the thoracolumbar spine, pelvis, and acetabulum. Systems of trauma care are evolving to encompass attention to expeditious and safe management of not only multiply injured patients with these major fractures, but also definitive care for hip and periprosthetic fractures, which pose a similar burden of patient recumbency until stabilized. Future directions regarding refinement of patient resuscitation, assessment, and treatment are anticipated, as is the potential for data sharing and registries in enhancing trauma system functionality. Cite this article:
The timing of surgical fixation in spinal fractures is a contentious topic. Existing literature suggests that early stabilization leads to reduced morbidity, improved neurological outcomes, and shorter hospital stay. However, the quality of evidence is low and equivocal with regard to the safety of early fixation in the severely injured patient. This paper compares complication profiles between spinal fractures treated with early fixation and those treated with late fixation. All patients transferred to a national tertiary spinal referral centre for primary surgical fixation of unstable spinal injuries without preoperative neurological deficit between 1 July 2016 and 20 October 2017 were eligible for inclusion. Data were collected retrospectively. Patients were divided into early and late cohorts based on timing from initial trauma to first spinal operation. Early fixation was defined as within 72 hours, and late fixation beyond 72 hours.Aims
Methods
The best time for definitive orthopaedic care is often unclear
in patients with multiple injuries. The objective of this study
was make a prospective assessment of the safety of our early appropriate
care (EAC) strategy and to evaluate the potential benefit of additional
laboratory data to determine readiness for surgery. A cohort of 335 patients with fractures of the pelvis, acetabulum,
femur, or spine were included. Patients underwent definitive fixation
within 36 hours if one of the following three parameters were met:
lactate <
4.0 mmol/L; pH ≥ 7.25; or base excess (BE) ≥ -5.5 mmol/L.
If all three parameters were met, resuscitation was designated full
protocol resuscitation (FPR). If less than all three parameters
were met, it was designated an incomplete protocol resuscitation
(IPR). Complications were assessed by an independent adjudication
committee and included infection; sepsis; PE/DVT; organ failure;
pneumonia, and acute respiratory distress syndrome (ARDS). Aims
Patients and Methods
There have been many advances in the resuscitation
and early management of patients with severe injuries during the
last decade. These have come about as a result of the reorganisation
of civilian trauma services in countries such as Germany, Australia
and the United States, where the development of trauma systems has
allowed a concentration of expertise and research. The continuing
conflicts in the Middle East have also generated a significant increase
in expertise in the management of severe injuries, and soldiers
now survive injuries that would have been fatal in previous wars.
This military experience is being translated into civilian practice. The aim of this paper is to give orthopaedic surgeons a practical,
evidence-based guide to the current management of patients with
severe, multiple injuries. It must be emphasised that this depends
upon the expertise, experience and facilities available within the
local health-care system, and that the proposed guidelines will
inevitably have to be adapted to suit the local resources.