Advertisement for orthosearch.org.uk
Results 1 - 20 of 1491
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1321 - 1326
1 Nov 2024
Sanchez-Sotelo J

Periprosthetic joint infection represents a devastating complication after total elbow arthroplasty. Several measures can be implemented before, during, and after surgery to decrease infection rates, which exceed 5%. Debridement with antibiotics and implant retention has been reported to be successful in less than one-third of acute infections, but still plays a role. For elbows with well-fixed implants, staged retention seems to be equally successful as the more commonly performed two-stage reimplantation, both with a success rate of 70% to 80%. Permanent resection or even amputation are occasionally considered. Not uncommonly, a second-stage reimplantation requires complex reconstruction of the skeleton with allografts, and the extensor mechanism may also be deficient. Further developments are needed to improve our management of infection after elbow arthroplasty.

Cite this article: Bone Joint J 2024;106-B(11):1321–1326.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1249 - 1256
1 Nov 2024
Mangwani J Houchen-Wolloff L Malhotra K Booth S Smith A Teece L Mason LW

Aims

Venous thromboembolism (VTE) is a potential complication of foot and ankle surgery. There is a lack of agreement on contributing risk factors and chemical prophylaxis requirements. The primary outcome of this study was to analyze the 90-day incidence of symptomatic VTE and VTE-related mortality in patients undergoing foot and ankle surgery and Achilles tendon (TA) rupture. Secondary aims were to assess the variation in the provision of chemical prophylaxis and risk factors for VTE.

Methods

This was a multicentre, prospective national collaborative audit with data collection over nine months for all patients undergoing foot and ankle surgery in an operating theatre or TA rupture treatment, within participating UK hospitals. The association between VTE and thromboprophylaxis was assessed with a univariable logistic regression model. A multivariable logistic regression model was used to identify key predictors for the risk of VTE.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims. The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. Methods. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%). Results. For detection and classification, the algorithm was trained on 1,709 radiographs (n = 803), tested on 567 radiographs (n = 244), and subsequently externally validated on 535 radiographs (n = 227). For characterization, healthy shoulders and glenohumeral dislocation were excluded. The overall accuracy for fracture detection was 94% (area under the receiver operating characteristic curve (AUC) = 0.98) and for classification 78% (AUC 0.68 to 0.93). Accuracy to detect greater tuberosity fracture displacement ≥ 1 cm was 35.0% (AUC 0.57). The CNN did not recognize NSAs ≤ 100° (AUC 0.42), nor fractures with ≥ 75% shaft translation (AUC 0.51 to 0.53), or with ≥ 15% articular involvement (AUC 0.48 to 0.49). For all objectives, the model’s performance on the external dataset showed similar accuracy levels. Conclusion. CNNs proficiently rule out proximal humerus fractures on plain radiographs. Despite rigorous training methodology based on CT imaging with multi-rater consensus to serve as the reference standard, artificial intelligence-driven classification is insufficient for clinical implementation. The CNN exhibited poor diagnostic ability to detect greater tuberosity displacement ≥ 1 cm and failed to identify NSAs ≤ 100°, shaft translations, or articular fractures. Cite this article: Bone Joint J 2024;106-B(11):1348–1360


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1125 - 1132
1 Oct 2024
Luengo-Alonso G Valencia M Martinez-Catalan N Delgado C Calvo E

Aims

The prevalence of osteoarthritis (OA) associated with instability of the shoulder ranges between 4% and 60%. Articular cartilage is, however, routinely assessed in these patients using radiographs or scans (2D or 3D), with little opportunity to record early signs of cartilage damage. The aim of this study was to assess the prevalence and localization of chondral lesions and synovial damage in patients undergoing arthroscopic surgery for instablility of the shoulder, in order to classify them and to identify risk factors for the development of glenohumeral OA.

Methods

A total of 140 shoulders in 140 patients with a mean age of 28.5 years (15 to 55), who underwent arthroscopic treatment for recurrent glenohumeral instability, were included. The prevalence and distribution of chondral lesions and synovial damage were analyzed and graded into stages according to the division of the humeral head and glenoid into quadrants. The following factors that might affect the prevalence and severity of chondral damage were recorded: sex, dominance, age, age at the time of the first dislocation, number of dislocations, time between the first dislocation and surgery, preoperative sporting activity, Beighton score, type of instability, and joint laxity.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1100 - 1110
1 Oct 2024
Arenas-Miquelez A Barco R Cabo Cabo FJ Hachem A

Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available.

Cite this article: Bone Joint J 2024;106-B(10):1100–1110.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1111 - 1117
1 Oct 2024
Makaram NS Becher H Oag E Heinz NR McCann CJ Mackenzie SP Robinson CM

Aims

The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model.

Methods

A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1158 - 1164
1 Oct 2024
Jakobi T Krieg I Gramlich Y Sauter M Schnetz M Hoffmann R Klug A

Aims

The aim of this study was to evaluate the outcome of complex radial head fractures at mid-term follow-up, and determine whether open reduction and internal fixation (ORIF) or radial head arthroplasty (RHA) should be recommended for surgical treatment.

Methods

Patients who underwent surgery for complex radial head fractures (Mason type III, ≥ three fragments) were divided into two groups (ORIF and RHA) and propensity score matching was used to individually match patients based on patient characteristics. Ultimately, 84 patients were included in this study. After a mean follow-up of 4.1 years (2.0 to 9.5), patients were invited for clinical and radiological assessment. The Mayo Elbow Performance Score (MEPS), Oxford Elbow Score (OES), and Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire score were evaluated.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1150 - 1157
1 Oct 2024
de Klerk HH Verweij LPE Doornberg JN Jaarsma RL Murase T Chen NC van den Bekerom MPJ

Aims

This study aimed to gather insights from elbow experts using the Delphi method to evaluate the influence of patient characteristics and fracture morphology on the choice between operative and nonoperative treatment for coronoid fractures.

Methods

A three-round electronic (e-)modified Delphi survey study was performed between March and December 2023. A total of 55 elbow surgeons from Asia, Australia, Europe, and North America participated, with 48 completing all questionnaires (87%). The panellists evaluated the factors identified as important in literature for treatment decision-making, using a Likert scale ranging from "strongly influences me to recommend nonoperative treatment" (1) to "strongly influences me to recommend operative treatment" (5). Factors achieving Likert scores ≤ 2.0 or ≥ 4.0 were deemed influential for treatment recommendation. Stable consensus is defined as an agreement of ≥ 80% in the second and third rounds.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 970 - 977
1 Sep 2024
De Rus Aznar I Ávila Lafuente JL Hachem A Díaz Heredia J Kany J Elhassan B Ruiz Ibán MÁ

Rotator cuff pathology is the main cause of shoulder pain and dysfunction in older adults. When a rotator cuff tear involves the subscapularis tendon, the symptoms are usually more severe and the prognosis after surgery must be guarded. Isolated subscapularis tears represent 18% of all rotator cuff tears and arthroscopic repair is a good alternative primary treatment. However, when the tendon is deemed irreparable, tendon transfers are the only option for younger or high-functioning patients. The aim of this review is to describe the indications, biomechanical principles, and outcomes which have been reported for tendon transfers, which are available for the treatment of irreparable subscapularis tears.

The best tendon to be transferred remains controversial. Pectoralis major transfer was described more than 30 years ago to treat patients with failed surgery for instability of the shoulder. It has subsequently been used extensively to manage irreparable subscapularis tendon tears in many clinical settings. Although pectoralis major reproduces the position and orientation of the subscapularis in the coronal plane, its position in the axial plane – anterior to the rib cage – is clearly different and does not allow it to function as an ideal transfer. Consistent relief of pain and moderate recovery of strength and function have been reported following the use of this transfer. In an attempt to improve on these results, latissimus dorsi tendon transfer was proposed as an alternative and the technique has evolved from an open to an arthroscopic procedure. Satisfactory relief of pain and improvements in functional shoulder scores have recently been reported following its use. Both pectoralis minor and upper trapezius transfers have also been used in these patients, but the outcomes that have been reported do not support their widespread use.

Cite this article: Bone Joint J 2024;106-B(9):970–977.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 924 - 934
1 Sep 2024
Cheok T Beveridge A Berman M Coia M Campbell A Tse TTS Doornberg JN Jaarsma RL

Aims

We investigated the efficacy and safety profile of commonly used venous thromboembolism (VTE) prophylaxis agents following hip and knee arthroplasty.

Methods

A systematic search of PubMed, Embase, Cochrane Library, Web of Science, and OrthoSearch was performed. Prophylaxis agents investigated were aspirin (< 325 mg and ≥ 325 mg daily), enoxaparin, dalteparin, fondaparinux, unfractionated heparin, warfarin, rivaroxaban, apixaban, and dabigatran. The primary efficacy outcome of interest was the risk of VTE, whereas the primary safety outcomes of interest were the risk of major bleeding events (MBE) and wound complications (WC). VTE was defined as the confirmed diagnosis of any deep vein thrombosis and/or pulmonary embolism. Network meta-analysis combining direct and indirect evidence was performed. Cluster rank analysis using the surface under cumulative ranking (SUCRA) was applied to compare each intervention group, weighing safety and efficacy outcomes.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 879 - 883
1 Sep 2024
Kayani B Staats K Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1008 - 1014
1 Sep 2024
Prijs J Rawat J ten Duis K Assink N Harbers JS Doornberg JN Jadav B Jaarsma RL IJpma FFA

Aims

Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination external rotation injury. By relating the experience of adult to paediatric fractures, clarification has been sought on the sequence of injury, ligament involvement, and fracture pattern of triplane fractures. This study explores the similarities between triplane and trimalleolar fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction and fixation techniques.

Methods

Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with trimalleolar fractures were collected, and their fracture morphology was compared using fracture maps. Visual fracture maps were assessed, classified, and compared with each other, to establish the progression of injury according to the Lauge-Hansen classification.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969