Initial treatment of traumatic spinal cord injury remains as controversial in 2023 as it was in the early 19th century, when Sir Astley Cooper and Sir Charles Bell debated the merits or otherwise of surgery to relieve cord compression. There has been a lack of high-class evidence for early surgery, despite which expeditious intervention has become the surgical norm. This evidence deficit has been progressively addressed in the last decade and more modern statistical methods have been used to clarify some of the issues, which is demonstrated by the results of the SCI-POEM trial. However, there has never been a properly conducted trial of surgery versus active conservative care. As a result, it is still not known whether early surgery or active physiological management of the unstable injured spinal cord offers the better chance for recovery. Surgeons who care for patients with traumatic spinal cord injuries in the acute setting should be aware of the arguments on all sides of the debate, a summary of which this annotation presents. Cite this article:
Aims. The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with
Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.Aims
Methods
The aim of this study was to determine whether chilled irrigation
saline decreases the incidence of clinical upper limb palsy (ULP;
a reduction of one grade or more on manual muscle testing; MMT),
based on the idea that ULP results from thermal damage to the nerve
roots by heat generated by friction during bone drilling. Irrigation saline for drilling was used at room temperature (RT,
25.6°C) in open-door laminoplasty in 400 patients (RT group) and
chilled to a mean temperature of 12.1°C during operations for 400
patients (low-temperature (LT) group). We assessed deltoid, biceps,
and triceps brachii muscle strength by MMT. ULP occurring within
two days post-operatively was categorised as early-onset palsy.Aims
Methods
We assessed the frequency and causes of neurological
deterioration in 59 patients with spinal cord injury on whom reports
were prepared for clinical negligence litigation. In those who deteriorated
neurologically we assessed the causes of the change in neurology
and whether that neurological deterioration was potentially preventable.
In all 27 patients (46%) changed neurologically, 20 patients (74%
of those who deteriorated) had no primary neurological deficit.
Of those who deteriorated, 13 (48%) became Frankel A. Neurological
deterioration occurred in 23 of 38 patients (61%) with unstable
fractures and/or dislocations; all 23 patients probably deteriorated
either because of failures to immobilise the spine or because of
inappropriate removal of spinal immobilisation. Of the 27 patients who
altered neurologically, neurological deterioration was, probably,
avoidable in 25 (excess movement in 23 patients with unstable injuries,
failure to evacuate an epidural haematoma in one patient and over-distraction following
manipulation of the cervical spine in one patient). If existing
guidelines and standards for the management of actual or potential
spinal cord injury had been followed, neurological deterioration
would have been prevented in 25 of the 27 patients (93%) who experienced
a deterioration in their neurological status. Cite this article:
The most common injury in rugby resulting in
spinal cord injury (SCI) is cervical facet dislocation. We report
on the outcome of a series of 57 patients with acute SCI and facet
dislocation sustained when playing rugby and treated by reduction
between 1988 and 2000 in Conradie Hospital, Cape Town. A total of
32 patients were completely paralysed at the time of reduction.
Of these 32, eight were reduced within four hours of injury and
five of them made a full recovery. Of the remaining 24 who were
reduced after four hours of injury, none made a full recovery and only
one made a partial recovery that was useful. Our results suggest
that low-velocity trauma causing SCI, such as might occur in a rugby
accident, presents an opportunity for secondary prevention of permanent
SCI. In these cases the permanent damage appears to result from
secondary injury, rather than primary mechanical spinal cord damage.
In common with other central nervous system injuries where ischaemia
determines the outcome, the time from injury to reduction, and hence
reperfusion, is probably important. In order to prevent permanent neurological damage after rugby
injuries, cervical facet dislocations should probably be reduced
within four hours of injury.
Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.
This study assessed the frequency of acute injury to the spinal cord in Irish Rugby over a period of ten years, between 1995 and 2004. There were 12 such injuries; 11 were cervical and one was thoracic. Ten occurred in adults and two in schoolboys. All were males playing Rugby Union and the mean age at injury was 21.6 years (16 to 36). The most common mechanism of injury was hyperflexion of the cervical spine and the players injured most frequently were playing at full back, hooker or on the wing. Most injuries were sustained during the tackle phase of play. Six players felt their injury was preventable. Eight are permanently disabled as a result of their injury.