Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Spine

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 31 - 31
1 Jun 2012
van Loon PM van Rhijn L
Full Access

Introduction

Spinal deformations are a deviation of the natural arrangement of forces during growth. Environmental factors play a part in these deviations. The presence of lordosis in the thoracic spine is a causative factor in spinal deformations that needs to be addressed. Most biomechanical models of bracing have a scientific background. Has older knowledge lost its value? In living structures, all processes such as regulation of equilibrium in posture and movement use Newton's law and extended laws of Hooke for conservation of energy, momentum, and angular momentum under control of the central nervous system. Form follows function (phylogenetic and ontogenetic) in the spine as primary engine in movement in animals. The change in function in bipedals is that the coupling mechanism at the thoracolumbar joint now couples a reversed pendulum.

Methods

A literature search shows a clear gap in the evolution in science on deformities during 1914–45. In 1792, Van Gesscher postulated two concepts in Observations on Deformations of the Spine (Dutch). First, the optimalisation of the balancing forces in men needs a specific optimum curvature to keep the weight of the head and shoulders above the hips. The second concept was the role of sitting in relation to changes around the discs at the thoracolumbar spine. Girls who read or knitted while sitting developed scoliosis more easily than did others. His extending (by lordosis) corrective corset was used for more than 150 years before plaster became popular. Andry described guidance and correction of growing spines with use of the moulding capability of muscular forces, with exercises and extending corsets (for so-called weak girls). Extension and avoidance of incorrect posture during sitting became a mainstay in orthopaedics (and schools). In 1907, Wullstein described experiments in young dogs to show how forced fiexion produces all characteristics of kyphotic deformities. In 1912, Murk Jansen did a critical review of all available knowledge and his own research in The Physiologic Scoliosis and its causes. Post mortem studies showed anatomical asymmetry in the left and right crura of the diaphragm, which indicated that asymmetric rotational forces in ventilation could induce predominant lateral curves. In-vivo tests show increased thoracolumbar kyphosis if siblings are put in seated positions too frequently and too soon. The stiffening in kyphosis creates a fulcrum to cantilever the opposing rotational forces to lateral curvatures. In experiments in rabbits, lower intrathoracic pressure was shown in the right pleural cavity. Common alertness of parents and teachers was underwritten. Some of this still survives. In progressed scoliosis, Sayre's method of corrective plastering in suspension and Calot's corrections in prone position under anaesthesia and plaster shelves with lordosis in bed became popular. In the Volkmann Hueter principle, the resilience of the deformable structures in the spine were identified–eg, the discs, the apophyses, and the cartilage in joints have a role in spinal deformity. Cobb drew attention to the clinical aspects of scoliosis. Roth provided a comprehensive explanation of how growth is organised and regulated by the oldest organ of animal life: the central nervous system in vertebrates. Between 1960 and 1985, Roth developed his concepts on neurovertebral and neuro-osseous growth relations and the tension-driven incongruence of growth. Roth provided new biological knowledge about how growth seems to support older clinical observations. In animal experiments, mechanical modelling, and radiological studies in scoliosis he stressed the role that growth has in the formation of the spine. A so-called short cord can indeed cause scoliosis. Recent studies with MRI in idiopathic scoliosis confirm this hypothesis. Personal observations In 2008, a study showed that forceful restoration of thoracolumbar lordosis can correct double major scoliotic curves. A consequent thoracolumbar kyphotic curve was found, and recently reproduced. The thoracolumbar lordotic intervention brace technique showed promising results. It relied on the older techniques, leaving only the fear for lordosis brought by Dickson. In personal observations, the presence of neuromuscular tightness or tension also present in progressive scoliosis as representatives of deforming and protective forces.