The knees were mounted into an Instron materials testing machine. Paddles of pressure-sensitive Fuji Prescale Film were inserted into the lateral compartment of the knee, underneath the lateral meniscus. Each knee was then loaded to 700N for 10 seconds. The Fuji Film paddles were digitally scanned and then analysed using Scion Image Analysis software to determine the intra-articular contact pressures. Contact pressures were then determined after (i) total lateral meniscectomy, (ii) lateral meniscal allograft transplantation using a bone plug-keyhole technique to secure the horn attachments, and (iii) after insertion of the graft by suturing only.
Methods of accurately assessing the required dimensions of an ideal meniscal allograft for each patient are limited. One popular method used is to choose the appropriate graft according to the bony tibial plateau dimensions of the patient, as determined from plain radiographs.
Linear regression analysis was used to obtain a formula, relating each meniscal dimension to the various bony plateau measurements. The resulting equations were used to calculate an expected meniscal dimension from the measured plateau dimensions, and this was compared to the size of the actual dimension measured.
The mean percentage error between meniscal dimensions calculated from specific compartmental tibial plateau dimensions, and the actual measured meniscal dimensions was 5.3% (s.d. 4.1%). When using just total bony tibial plateau width to calculate meniscal dimensions, the percentage error was 6.2% (s.d. 4.9%). This difference was not statistically significant. The maximum error between calculated and actual meniscal dimensions was 32%.