Bone marrow stem cells (BMSCs) represent a collection of different cell types exhibiting stem cell characteristics but with notable heterogeneity. Among these, Skeletal Stem Cells (SSCs) represent a distinct matrix subgroup within BMSC and demonstrate a specialized capacity to facilitate bone formation, recruit chondrocytes, and contribute to hematopoiesis. SSCs play a pivotal role in orchestrating the functions of skeletal organs. Local ischemia has a significant impact on cell survival and function. We hypothesize that bone ischemia induces alterations in the differentiation potential of SSCs, consequently influencing changes in bone structure. We mechanically dissected tissue from the necrotic segment in the femoral head and more normal appearing areas from the femoral neck of specimens from 5 patients diagnosed with osteonecrosis of the femoral head (ONFH). These tissues were enzymatically broken down into individual cell suspensions. Utilizing fluorescence-activated cell sorting (FACS) based on specific surface markers indicative of human skeletal stem cells (hSSC), namely CD45- CD235a- CD31- TIE2- Podoplanin (PDPN)+ CD146- CD73+ CD164+, we isolated a distinct cell population. Subsequent in vitro evaluations, focusing on clonogenicity, osteogenesis, and chondrogenesis were conducted to assess the functional prowess of these SSCs. Moreover, we introduced BMP2 at a concentration of 50ng/ml to SSCs extracted from necrotic regions to potentially reinstate their osteogenic capabilities. We effectively isolated SSCs from both Necrotic and Non-necrotic Zones. We observed an augmented clonal formation capacity and chondrogenesis ability of SSCs isolated from the necrotic region, accompanied by a significant decline in osteogenic ability ( Ischemia adversely affects the proliferation and function of SSCs, resulting in a diminished osteogenic capacity and an insensitivity to BMP2, ultimately leading to structural alterations in bone tissue.
The presence or absence of crimp within the anterior cruciate ligament (ACL) sub-bundle anatomy was correlated with knee flexion angle changes and provided a measure of differential loading within its sub-bundle microstructure. Previous studies have shown that macroscopically the anteromedial (AM) and posterolateral (PL) bundles of the ACL tighten/slacken differently with knee flexion angle. This research used fibre crimp morphology, revealed following Summary
Introduction
Attempts have been made to develop standardise guidelines for knee implant wear testing of polyethylene (PE). The current ISO-14243-3 standard recommends the use “calf serum”, without giving ranges on the specific protein constituents and characteristics. In the present study, three types of frequently used calf sera with various protein constituents (albumin, globulins) were utilised. The effect of osmolality and hyaluronic acid (HA) was also assessed. An attempt was made to identify synovial fluid (SF) characteristics that may be responsible for the boundary lubrication in the joint with the goal to develop a more clinically relevant lubricant. Twenty samples of SF were drawn from twenty patients and analyzed. Specific protein constituents and osmolality were then compared to three calf sera used for wear testing. Test One (six million cycles (Mc)): Bovine calf serum (BCS), newborn calf serum (NCS) and alpha-calf serum (ACS) were diluted with distilled water (DW). Test two (5.5Mc): ACS with an osmolality of 312 ± 1.00 mmol/kg (closest to clinical osmolality; diluted with phosphate buffered saline, PBS) and 145 ± 2.00 mmol/kg (diluted with DW) were consecutively tested. HA was added at a concentration of 1.5g/l. Modular total knee replacements of cruciate retaining design (GUR 1050, 10mm PE insert) were used. ACS diluted with PBS appeared to be of closest specific protein constituents and osmolality when compared to SF. The wear rate for BCS was 21.81 ± 2.48 mg/Mc, 17.05 ± 3.25 mg/Mc for NCS, and 13.44 ± 0.79 mg/Mc for ACS (p <
0.016). Decreased osmolality amplified the PE wear by a factor of 2.3 (p = 0.020). Adding HA increased the PE wear by a factor of two (p = 0.002). There was significant difference in PE wear rates between the three calf-sera. BCS and NBC did not have clinically relevant levels of specific protein constituents. This study strongly suggests that current standards for total knee wear testing should be revised to enable more controlled wear testing under more clinically relevant conditions. It is suggested to be of particular importance when new bearing materials, such as cross-linked PE’s, are evaluated and proposed for clinical application.
We operated on 111 patients with 159 congenital club feet with the aim of correcting the deformity and achieving dynamic muscle balance. Clinical and biomechanical assessment was undertaken at least six years after operation when the patient was more than 13 years of age. The mean follow-up was for 11 years 10 months (6 to 36 years). Good and excellent results were obtained in 91.8%. Patients with normal function of the calf had a better outcome than those with weak calf muscles. The radiological changes were assessed in relation to the clinical outcome. The distribution of pressure under the foot was measured for biomechanical assessment. Our results support the view that muscle imbalance is an aetiological factor in club foot. Early surgery seems to be preferable. It is suggested that operation should be undertaken as soon as possible after the age of six months, although it may be carried out up to the age of five years. The establishment of dynamic muscle balance appears to be an effective method of maintaining correction. Satisfactory long-term results can be achieved with adequate appearance and function.
We have reviewed 10 patients treated for anterior tarsal tunnel syndrome produced by compression of the deep peroneal nerve or its branches, and we have studied the anatomy of the tunnel in 25 adult feet. The causes of onset of the syndrome included contusion of the dorsum of the foot, tight shoe laces, talonavicular osteophytosis, ganglion, and pes cavus. The clinical signs were often diagnostic but electromyography was helpful. Operative decompression in nine feet of eight patients gave successful results at 1.5 to 4 years follow-up.