There is still no clear consensus regarding which cup position might provide better functional performance for developmental dysplasia of the hip (DDH). This study aimed to evaluated the feasibility and efficacy of acetabular mirroring reconstruction for DDH in total hip arthroplasty (THA). The study reviewed 96 patients (96 hips) with unilateral Crowe type-II/III DDH undergoing either visualized navigation-assisted mirroring reconstruction with augment according to the rotation center and biomechanical structure of the contralateral normal hips (Mirroring group, 51 hips) or high hip center reconstruction (HHC group, 45 hips) in THA from 2020 to 2023. The functional and radiographic results were analyzed between the groups during a mean follow-up period of 27.5 and 28.9 months (a minimum follow-up of 12 months). The Harris hip score at the last follow-up significantly improved in both groups, while it was significantly higher in the mirroring group (P<0.001). In the HHC group, the rotation center height and greater trochanter height were significantly increased in the affected hip (P<0.001; P<0.001) and the abductor lever arm was significantly decreased in the affected hip compared to that in the contralateral normal hip (P<0.001), whereas in the mirroring group no significant statistical differences were observed between two sides. The limping occurred in 7 patients (13.7%) in the mirroring group and 14 patients (31.1%) in the HHC group (P=0.040). A multiple logistic regression demonstrated mirroring reconstruction could reduce the incidence of postoperative limping (P=0.020). Both mirroring and HHC reconstruction could improve the functional performance of THA, whereas mirroring reconstruction could offer superior biomechanical results and gait improvement as compared with HHC reconstruction, meeting the higher requirements of functional recovery.
Osteonecrosis of the femoral head after femoral neck fracture (ONFHpoFNFx) poses challenges in children, particularly at Ficat III stage. Limited effective treatments are available. This study explores basicervical femoral neck rotational osteotomy (BFNRO) for ONFHpoFNFx in children and adolescents and evaluates its outcomes. Children and adolescents with ONFHpoFNFx (Ficat stage III) underwent BFNRO at our center from June 2017 to September 2022 were included. Follow-up exceeded 1 year, with data on modified-Harris-hip-score (mHHS), range of motion (ROM), patient satisfaction, femoral head collapse, necrotic area repair, leg-length, and osteoarthritis progression recorded. This study included 15 cases (15 hips), with 8 males and 7 females, averaging 12.9 years in age (range: 10–17 years). Nine cases had BFNRO alone, and six had combined PAO. Rotation angles varied from 70° to 90° for anterior rotation and 110° to 135° for posterior rotation. Nine patients had femoral neck fixation in a varus position (10° to 30°). The postoperative contour of the weight-bearing area of the femoral head has significantly improved in all patients. With an average follow-up of 28.6 months (range: 12.2–72.7 months), mHHS significantly improved (65.2 to 90.2, P<0.001). Only one patient showed femoral head collapse. Patients experienced no/mild hip pain (VAS=0-3), slight restriction in range of motion, and mild limb shortening. Two patients showed osteoarthritis progression. No infections, joint replacements, or nerve injuries were observed. Even in cases of ONFHpoFNFx in the late stage, BFNRO in children and adolescents can still yield positive early to mid-term results by relocating the necrotic area and restoring the integrity of the anterior-lateral column of the femoral head, thereby preventing femoral head collapse and delaying the onset of severe osteoarthritis.
Eccentric reductions may become concentric through femoral head ‘docking’ (FHD) following closed reduction (CR) for developmental dysplasia of the hip (DDH). However, changes regarding position and morphology through FHD are not well understood. We aimed to assess these changes using serial MRI. We reviewed 103 patients with DDH successfully treated by CR and spica casting in a single institution between January 2016 and December 2020. MRI was routinely performed immediately after CR and at the end of each cast. Using MRI, we described the labrum-acetabular cartilage complex (LACC) morphology, and measured the femoral head to triradiate cartilage distance (FTD) on the midcoronal section. A total of 13 hips with initial complete reduction (i.e. FTD < 1 mm) and ten hips with incomplete MRI follow-up were excluded. A total of 86 patients (92 hips) with a FTD > 1 mm were included in the analysis.Aims
Methods
Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle.Aims
Methods
To investigate the clinical results of capsular arthroplasty in the treatment of young patients with unilateral hip dislocation. We retrospectively evaluated all patients who had the capsular arthroplasty from June 2012 to September 2016 in our department. Hips were evaluated using hip Harris score (HHS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score. The Tonnis osteoarthritis grade and Severin classification were used to access the radiographic outcomes. Fifty-nine patients (10 males and 49 females) with an average of 16.8y (range: 8–26y) were followed by a mean of 32.1 months (range: 12.5–66.0 months). The mean HHS was 83.4 (range: 31.2–99) and WOMAC score was 12.3 (range: 0–49) at the final follow up. Multivariate analysis revealed that the poor capsular quality (OR=8.29) was associated with the poor result. The thicker capsule (OR=0.83) and bigger femoral head (OR=0.73) were associated with the good result. There were 15 patients (25.4%) identified as Tonnis grade 0, 21 patients (35.6%) as grade 1, 18 patients (30.5%) as grade 2 and 5 patients (8.5%) as grade 3. According to Severin classification, 28 patients (47.6%) were regarded as class I, 22 patients (37.3%) as II, 7 patients (11.9%) as III and 2 patients (3.4%) as IV. One patient underwent THA after 41.5 months. The joint stiffness was the most common complication (10.2%). We confirmed the efficacy of the capsular arthroplasty in the treatment of young patients with unilateral hip dislocation. The capsular quality and the size of femoral head were associated with the clinical results.
Cam-type femoroacetabular impingement (cam-FAI) can be treated with femoral neck osteochondroplasty to increase the clearance between the femoral head/neck and the acetabular rim. Because femur-acetabulum contact is very difficult to assess directly in patients, it is not clear if this surgery achieves its objective of reducing femur-acetabulum contact, and it is not clear how much of the femoral head/neck region should be resected to allow clearance in all activities. Our research question was: “Does femoral neck osteochondroplasty increase femur-acetabulum clearance in an extreme hip posture in patients with cam FAI?” We recruited 8 consecutive patients scheduled to undergo arthroscopic femoral neck osteochondroplasty to treat cam-type FAI. We assessed clearance between the acetabulum and the femoral neck before surgery and at 6 months post-op using an upright open MRI scanner that allowed the hip to be scanned in flexed postures. We scanned each subject in a supine hip flexion (90 degree), adduction and internal rotation (FADIR) posture. We measured the beta angle, which describes clearance between the acetabular rim and the femoral head/neck deformity. Osteochondroplasty increased clearance from a mean beta angle of −9.4 degrees (SD 19.3) to 4.4 degrees (SD 16.2°) (p<0.05). This finding suggests that femoral neck osteochondroplasty increases femur-acetabulum clearance substantially for a posture widely accepted to provoke symptoms in patients with cam-FAI.
The coronal plane lower limb alignment plays an important role in the occurrence and progression in knee osteoarthritis. There have been reports of the valgus knee in patients with unilateral developmental hip dislocation (UDHD) with the relatively small sample size. Besides, few studies have analyzed the lower limb alignment of the contralateral side. The purpose of our study was to identify the coronal plane alignment of both the ipsilateral and the contralateral lower limb in patients with UDHD and find out the difference between patients with Hartofilakidis type II and III. The radiographic data of all UDHD patients who met the inclusion criteria from March 2011 to February 2017 were retrospectively reviewed, including the hip-knee-ankle angle (HKA), mechanical lateral distal femoral angle (mLDFA), anatomical lateral distal femoral angle (aLDFA), mechanical proximal tibial angle (MPTA) and the lateral distal tibial angle (LDTA). Besides, the femoral torsion angle was measured on the images of CT scan. The average HKA was 3.42°(range: −4.3–12.8°) on the affected side, and −2.11°(range: −11.4–5.4°) on the contralateral side (P?0.0001). The valgus lower limb alignment on ipsilateral side was most frequently seen in both Hartofilakidis type II (20cases, 51.3%) and type III groups (25cases, 67.6%), whereas for the contralateral side, the neutral alignment in type II group (27 cases, 69.2%) and varus alignment in type III group (19 cases, 51.4%) were most commonly observed. Both the mLDFA (P?0.001) and aLDFA (P?0.001) of ipsilateral side were significantly smaller than those of contralateral side. The average femoral torsion angle was 37.9°(range: 10.4–64.4°) on the affected side, and 27.1°(range: 9.7–45.5°) on the contralateral side (P?0.001). In conclusion, UDHD patients may present with lower limb malalignment on both sides. The valgus lower limb alignment is the most common deformity on ipsilateral side, which is caused by increased femoral torsion angle as well as the decreased aLDFA. The patients with Hartofilakidis type III UDHD may be more prone to present varus alignment deformity than those with Hartofilakidis type II on the contralateral side. The lower limb malalignment and deformity of ipsilateral distal femur should be considered during any surgery involving hip, knee or femur.