With its high wear and corrosion resistance, CoCrMo alloy has been widely used for metal-on-metal total hip replacements (THRs). However, the use of the metal-on-metal implants has dropped substantially as a result of several alerts issued by the Medicines and Healthcare products Regulatory Agency (MHRA) due to concern on metal ion release [1]. However, some of the first generation of metal-on-metal THRs have lasted for more than 20 years [2]. It is far from clear why some MoM joints have survived, while other failed. It is known that dynamic changes occur at the metal surface during articulation. For example, a nanocrystalline layer has been reported on the topmost surface of both The current work focuses on the sub-surface damage evolution of explanted MoM hips, which is compared to A nanocrystalline layer (which was not present on the starting surfaces) was observed on both explanted
Retrieved alumina-on-alumina hip joints frequently exhibit a localised region of high wear, commonly called ‘stripe wear’. This ‘stripe wear’ can be replicated in vitro by the introduction of micro-separation, where the joint contact shifts laterally reproducing edge loading during the simulated walking cycle. While the origin of stripe wear is clearly associated with the micro-scale impact resulting from micro-separation, the wear processes leading to its formation and the wear mechanisms elsewhere on the joint are not so well understood. The purpose of this study was to compare the surface microstructure of in vivo and in vitro alumina hip prostheses, and investigate the origins of the damage accumulation mechanisms that lead to prosthetic failure. The in vivo alumina hip prosthesis was Biolox (Ceram-Tec, AG, Plochingen, Gemany) implanted for 11 years [ This allows the cycle to be repeated and accelerated, thus yielding the stripe wear region. The conclusions are: 1. In vitro hip simulation with micro-separation can produce similar microstructure to in vivo alumina hip prostheses; 2. To extend the life of the joint through the avoidance of severe wear, material and design solutions can be investigated using ceramic materials that have an increased surface inter-granular fracture toughness and component designs with reduced contact stress under edge loading.