The analysis of synovial fluid has proved to be of crucial importance in the diagnostic process of prosthetic joint infections (PJI), suggesting the presence of an infection before the microbiological culture results. In this context, several studies illustrated the efficacy of synovial calprotectin in supporting the diagnosis of PJI [1, 2]. However, several testing methods have been explored to detect synovial calprotectin levels, emphasizing the need to use a standardized, rapid and rapid test. In this study, synovial calprotectin was analyzed by means of a commercial stool test [3] to explore whether the detected levels might predict PJIs and, therefore, being a promising tool for the fast and reliable diagnosis of this complication. The synovial fluid of 55 patients underwent to revision of the prosthetic implant were analyzed. The measurement of calprotectin was carried out by of commercial stool test, following the protocol for liquid samples. Calprotectin levels were then compared to other synovial biomarkers of PJI such as leucocyte esterase and count and percentage of polymorphonuclear cells. Data analysis were performed using R software v4.1.1 (R Core Team) and package “pROC” [4]. Receiver operator characteristics curves were designed using culture test as gold standard to evaluate the area under curve (AUC) of each method (with DeLong method for confidence-interval calculation). Thresholds were calculated to maximize Youden's index; sensitivity and specificity were reported. One-to-one Pearson's correlations coefficient were calculated for each pair of methods. P value <0.05 were considered statistically significant.Aim
Method
Trabecular Titanium™ (TT) is a novel material with a structure similar to trabecular bone, already used for prosthetic clinical applications. Being the bone-implant interface the weakest point during the initial healing period, the association of TT with a hydrogel enriched with progenitor cells and osteoinductive factors may represent a promising strategy to improve prosthesis osteointegration. In a previous in vitro study we evaluated the ability of an ammidated carboxymethylcellulose hydrogel (CMCA) and of TT enriched with CMCA to support bone marrow mesenchymal stem cells (BMSCs) viability and osteogenic differentiation [1]. The aim of this study was to evaluate in vivo if the association of TT with CMCA enriched with strontium chloride (SrCl2) and BMSCs could ameliorate TT osteointegration. This study combines TT with CMCA, SrCl2 and BMSCs. To mimic prosthesis-bone implants, TT discs were seeded with human BMSCs predifferentiated in osteogenic medium, then press-fit into engineered bone. A total of 36 athymic mice were implanted subcutaneously, each animal received 2 constructs as un-seeded TT and TT+CMCA or cell seeded TT+BMSCs and TT+CMCA+BMSCs. After 4, 8 and 12 weeks, osteodeposition, bone mineral density (BMD) and osteointegration were evaluated by fluorescence imaging, micro-CT, SEM, histology and pull-out tests.INTRODUCTION
METHODS
This paper offers a summary of the ethical guide
for the European orthopaedic community; the full report will be
published in the EFORT Journal. Cite this article: