Although periarticular injection plays an important role in multimodal pain management following total hip arthroplasty (THA), there is no consensus on the optimal composition of the injection. In particular, it is not clear whether the addition of a corticosteroid improves the pain relief achieved nor whether it is associated with more complications than are observed without corticosteroid. The aim of this study was to quantify the safety and effectiveness of cortocosteroid use in periarticular injection during THA. We conducted a prospective, two-arm, parallel-group, randomized controlled trial involving patients scheduled for unilateral THA. A total of 187 patients were randomly assigned to receive periarticular injection containing either a corticosteroid (CS group) or without corticosteroid (no-CS group). Other perioperative interventions were identical for all patients. The primary outcome was postoperative pain at rest during the initial 24 hours after surgery. Pain score was recorded every three hours until 24 hours using a 100 mm visual analogue scale (VAS). The primary outcome was assessed based on the area under the curve (AUC).Aims
Methods
Although total knee replacement became a widespread procedure for the purpose of knee reconstruction, osteotomies around the knee were regularly performed. Total knee arthroplasty should be performed for advanced arthritis of the knee. With the advent of biplanar open wedge high tibial osteotomy (HTO) combined with locking plate fixation, HTO has been expanded and its surgical outcome has been improved in recent years. However, post-operative joint-line obliquity has been raised as a concern with this procedure, which may affect the outcome especially in the knees with severe varus deformity. Hence the purpose of this study is to analyze the compression and shear stresses in the knee cartilage with joint line obliquity after HTO. Using a three-dimensional computer aided design software, the digital knee model with soft tissues was developed. The geometrical bone data used in this study were derived from commercially available human bone digital anatomy media (3972 and 3976, Pacific Research Laboratories, Inc., WA, USA). The three-dimensional knee model was transferred to finite element model. Material properties of the soft tissues and bones were derived from previous studies. The loading condition was adjusted to the load during a single-leg stance of the gait cycle, which resulted in an axial compressive load of 1200 N. Two different conditions were subjected to the analysis: normal alignment and joint-line obliquity after HTO. For the normal alignment, a static force of 1200 N was applied along the mechanical axis. For the joint-line obliquity models, a single force of 1200 N was applied rotating force directions in the frontal plane from the normal direction by 2.5º, 5º, 7.5º, and 10º, respectively.Introduction
Methods
In recent literatures dealing with optimisation of prosthetic alignment in total hip arthroplasty (THA), the concept of combined anteversion (CA), sum of acetabular anteversion (AV) and femoral antetorsion (AT), has been addressed. We have been using an image-free THA navigation system?OrthoPilot THAPro?to achieve improved overall alignment with both stem and cup. In the use of this system, we have used the stem-first procedure so-called CA technique. In this technique, the femur was prepared first with the target angle corresponding to the native femoral AT and the cup AV was decided considering CA calculated with the formula of Widmer (37.3°= cup AV + 0.7 stem AT). The purpose of this study was to evaluate the accuracy of CA by using CA technique with image-free navigated THA. Fifty hips underwent primary THA using OrthoPilot THApro with CA technique. In CA technique, the femur was prepared first and the target angle of AT value was basically determined by for the individual native femoral AT angle. After the femur was prepared, the cup AV was decided based on the formula of Widmer. All included patients underwent postoperative CT examination, and the prosthetic alignment was assessed using the 3D-Template system (Zed Hip, LEXI).Introduction
Methods
Implant positioning is one of the critical factors influencing the postoperative outcome in total hip arthroplasty (THA). Conventional (manual) intraoperative stem adjustment may result in variability and inaccuracy of stem antetorsion (AT). Since March 2013, we have measured stem antetorsion with CT free Navigation system (OrthoPilot Navigation System THA Pro Ver4.2, B/Braun Aesculap Germany: Navi). We have developed a simple instrument, the Gravity-guide (G-guide), for intraoperative assessment and adjustment of stem AT. We evaluated the accuracy and effectiveness of G-guide and navigation software as referenced to postoperative CT evaluation with 3D template system (Zed hip, LEXI, Japan). Between March 2013 and December 2014, 50 patients underwent primary THA were evaluated. Surgeries were performed with routine techniques with a modified Hardinge approach with the patient at a lateral decubitus position in all cases. The G-guide consists of two parts: one attached to the lower leg and the other attached to the handle of the rasp. During surgery, AT value was determined with navigation at the time of final rasping of the femur. Additionally, the G-guide was utilised at the time of final rasp insertion. In intraoperative AT assessment using this instrument, a correction was required considering the discrepancy between the perpendicular to the posterior condylar axis and the longitudinal axis of the lower leg. The angle of discrepancy between posterior condylar line and femoral trans-epicondyler axis needs to be taken into consideration. Therefore, correction by the angle between the trans-epicondylar and posterior condylar lines (correction angle) was required for each patient when the intraoperative AT as measured by the G-guide. Therefore, the correction angle should be added to the AT value obtained from the G-guide for comparison with postoperative value measured with Zed Hip.Purpose
Method
We undertook a prospective, randomised study in order to evaluate the efficacy of clamping the drains after intra-articular injection of saline with 1:500 000 adrenaline compared with post-operative blood salvage in reducing blood loss in 212 total knee arthroplasties. The mean post-operative drained blood volume after drain clamping was 352.1 ml compared to 662.3 ml after blood salvage (p <
0.0001). Allogenic blood transfusion was needed in one patient in the drain group and for three in the blood salvage group. Drain clamping with intra-articular injection of saline with adrenaline is more effective than post-operative autologous blood transfusion in reducing blood loss during total knee arthroplasty.
We describe a patient with a traumatic spondylolisthesis of L5 and multiple, bilateral pedicle fractures from L2 to L5. Conservative treatment was chosen, with eventual neurological recovery and bony union. We are not aware of previous reports of this pattern of injury.
We undertook 114 arthroscopic meniscal repairs in 111 patients and subsequently carried out second-look arthroscopy to confirm meniscal healing at a mean of 13 months after repair. Stable healing at the repaired site was seen in 90. Of these, however, 13 had another arthroscopy later for a further tear. The mean period between the repair and the observation of a repeat tear was 48 months. Of the 13 patients, 11 had returned to high activity levels (International Knee Documentation Committee level I or II) after the repair. An attempt should be made to preserve meniscal function by repairing tears, but even after arthroscopic confirmation of stable healing repaired menisci may tear again. The long-term rate of healing may not be as high as is currently reported. Second-look arthroscopy cannot predict late meniscal failure and may not be justified as a method of assessment for meniscal healing. Young patients engaged in arduous sporting activities should be reviewed regularly even after arthroscopic confirmation of healing.