header advert
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 102 - 102
1 Sep 2012
Kuong E Cheung K Samartzis D Yeung K Luk K
Full Access

Despite the myriad new spinal instrumentation systems, scoliosis can rarely be fully corrected, especially when the curves are stiff. A novel superelastic nickel-titanium (nitinol) rod that maximises the ability to slowly correct spinal deformities by utilising the viscoelastic properties of the spine has been developed. This parallel, double-blinded, randomised controlled trial compared the safety and efficacy of these new rods to conventional titanium rods in 23 patients with adolescent idiopathic scoliosis. The superelastic nitinol rods were found to be safe, could gradually correct scoliosis curves, and ultimately resulted in better coronal and sagittal alignments compared to traditional rods.

Despite the myriad new spinal instrumentation systems, scoliosis can rarely be fully corrected, especially when the curves are stiff. A novel superelastic nickel-titanium (nitinol) rod that maximises the ability to slowly correct spinal deformities by utilising the viscoelastic properties of the spine has been developed. This parallel, double-blinded, randomised controlled trial compared the safety and efficacy of these new rods to conventional titanium rods in 23 patients with adolescent idiopathic scoliosis. The superelastic nitinol rods were found to be safe, could gradually correct scoliosis curves, and ultimately resulted in better coronal and sagittal alignments compared to traditional rods.