header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 308 - 308
1 Jul 2014
Pezeshki P Akens M Woo J Whyne C Yee A
Full Access

Summary

A novel bipolar cooled radiofrequency ablation probe, optimised for bone metastases applications, is shown in two preclinical models to offer a safe and minimally invasive treatment option that can ablate large tissue volumes and preserve the regenerative ability of bone.

Introduction

Use of radiofrequency ablation (RFA) in treating of skeletal metastases has been rising, yet its impact on bone tissue is poorly understood. 2–11 RF treatment induces frictional heating and effectively necrotises tissue in a local and minimally invasive manner.1 Bipolar cooled RF (BCRF) is a significant improvement to conventional RF whereby larger regions can be safely treated, protecting sensitive neighbouring tissues from thermal effects. This study aimed to evaluate the safety and feasibility of a novel bipolar RFA probe to create large contained lesions within healthy pig vertebrae and its determine its effects on bone and tumour cells in a rabbit long bone tumour model.