The available treatments for NSLBP (Non-Specific Low Back Pain) provide, typically, small to moderate average benefits to patients. The aim of this pilot cluster RCT was to test the hypothesis that the use of a patient decision aid together with an informed shared decision making consultation would produce better outcomes in satisfaction with treatment at four month follow-up. We developed a DSP (Decision Support Package). We randomised the physiotherapists and trained those in the intervention arm in informed shared decision making and communication. Participants were recruited from a local physiotherapy department and those allocated to an appointment with an intervention therapist were sent a copy of the DSP in the post. Participants then attended their appointment as usual.Background
Methods
Discogenic low back pain is a common cause of disability, but its pathogenesis is poorly understood. We collected 19 specimens of lumbar intervertebral discs from 17 patients with discogenic low back pain during posterior lumbar interbody fusion, 12 from physiologically ageing discs and ten from normal control discs. We investigated the histological features and assessed the immunoreactive activity of neurofilament (NF200) and neuropeptides such as substance P (SP) and vasoactive-intestinal peptide (VIP) in the nerve fibres. The distinct histological characteristic of the painful disc was the formation of a zone of vascularised granulation tissue from the nucleus pulposus to the outer part of the annulus fibrosus along the edges of the fissures. SP-, NF- and VIP-immunoreactive nerve fibres in the painful discs were more extensive than in the control discs. Growth of nerves deep into the annulus fibrosus and nucleus pulposus was observed mainly along the zone of granulation tissue in the painful discs. This suggests that the zone of granulation tissue with extensive innervation along the tears in the posterior part of the painful disc may be responsible for causing the pain of discography and of discogenic low back pain.
We examined the pathogenesis of Schmorl’s nodes, correlating the histological findings from 12 lumbar vertebrae with the corresponding conventional radiographs, tomographs, MR images and CT scans. The last revealed round, often multiple cystic lesions with indistinct sclerotic margins beneath the cartilaginous endplate. The appearances are similar to the typical CT changes of osteonecrosis. Histological examination of