header advert
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture.

In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 103 cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT.

Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis.

Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 4 - 4
1 Mar 2021
Braxton T Lim K Rnjak-Kovacina J Alcala-Orozco C Woodfield T Jiang L Jia X Yang X
Full Access

Abstract

Objectives

Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration.

Methods

Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm3), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial compression testing (strain rate 0.1mm/min), and the potential biocompatibility of the scaffolds was tested via in vitro culture of seeded bone marrow stromal cells post fabrication.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 10 - 10
1 Oct 2016
Albannaa R Kirkham J Burke J Liu C Yang X
Full Access

Poly-lactic acid (PLA) scaffolds are widely used in bone tissue engineering. The introduction of 3D printing has greatly increased the ability for tailoring different geometrical designs of these scaffolds for improved cellular attachment, growth and differentiation. This study aimed to investigate the effect of PLA fibre angle in 3D printed PLA scaffolds on hDPSC attachment and growth in vitro.

Two types of PLA scaffolds were prepared via 3D printing containing fibres angled at either 45° or 90°. hDPSCs (P4, 2*105 cells per scaffold) were statically seeded for 4 hours on to the scaffolds (7×3.5×3 mm3, n=3). Cellular attachment was checked using fluorescence microscopy and the number of unattached cells was counted using a haemocytometer (HCM). The cell-scaffold constructs were then cultured in osteogenic medium for up to 5 weeks. ALP staining and SEM were performed for one construct from each group at week 3. Cellular viability was determined using CMFDA/EHD1 live/dead labelling at week 4. After 5 weeks, constructs were processed for histology.

Fluorescence micrographs showed high numbers of hDPSCs attached to scaffold surfaces in both groups after seeding irrespective of fibre angle. However, HCM cell count revealed that the 45° angled PLA scaffolds had significantly greater cell attachment compared to the 90° angled PLA group (p<0.0001). After 3 weeks in osteogenic culture, both types of construct showed strong ALP staining. SEM showed that in the 45° angled PLA group, almost all macro-pores were fully closed with newly formed cell sheets. In comparison, in the 90° angled group, most of the macro-pores remained open although a limited amount of cellular bridging was present. SEM also detected crystal deposits in different areas within the cell sheets for both construct groups. Most hDPSCs were alive in both groups at week 4 of culture with few dead cells present. After 5 weeks, histology showed marked cellular growth and new matrix formation, with detectable Van Kossa +ve crystal deposits in different areas within all constructs irrespective of PLA fibre angle.

This study showed that 45° angled PLA 3D printed scaffolds enhanced hDPSC attachment and cellular bridging, which may help to rapidly close the macro-pores within the scaffold compared to the 90° angled group. This illustrates the potential of 45° angled 3D printed PLA scaffolds as good candidates for bone tissue engineering.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 6 - 6
1 Jul 2014
Bostrom M Courtland H Grosso M Sutherland J Stoner K Yang X van der Meulen M
Full Access

Summary Statement

The modulation of both quantity and quality of peri-implant bone with either PTH or loading may be viable options to improve implant fixation and patient outcomes.

A strong bone-implant interface is essential for successful joint replacement surgery. This study investigated the differences in bone surrounding and within a porous titanium implant after single or combined treatment with two anabolic bone therapies: intermittent parathyroid hormone (teriparatide) and mechanical loading. Porous titanium implants were inserted bilaterally on the distal lateral femurs of rabbits. The right implant was loaded daily (1 MPa, 50 cycles/day) while the left implant was not. Rabbits received daily PTH injections (20 ug/kg) or saline vehicle. Periprosthetic cancellous bone 0.5, 1.0, and 2.0 mm below the implant surface, bone at the 0.25 mm bone-implant interface and total bone within each implant were examined using tissue-level analyses (quantitative backscattered electron microscopy), cellular analyses (immunohistochemistry staining of osteoblasts with procollagen-1 and TRAP staining of osteoclasts), and shear testing (implant-bone interface).

Statistical significance was determined using GEE models (p<0.05). For tissue located 0.5 mm below the implant, significant increases in bone area per total area (BA/TA) were observed with PTH treatment (56%) and with loading (27%). Further, an 18% increase in mineralization density with PTH treatment and a 20% increase in mineralization density with loading was found. Loading effects were not present beyond the 0.5 mm periprosthetic region, but PTH significantly increased BA/TA 2.0 mm below and mineralization density 1.0 mm below the implant. Tissue-level changes were supported by increases in osteoblast activity 0.5 mm below the implant with PTH (79%) and loading (34%), as well as by minimal osteoclast changes. At the 0.25 mm implant-bone interface PTH and loading increased BA/TA (16% and 23%, respectively), but only loading increased mineralization density (7%). Further, total integrated bone area was increased 35% with PTH.

Both PTH and loading enhanced the mechanical integrity of the implant-bone; shear strength increased 34% and 60%, respectively. Although combined treatment was not synergistic, both PTH and loading individually enhanced the amount and mineralization density of bone at the implant interface and immediately below the interface, thereby increasing the mechanical strength of the metal-bone interface. This research suggests that modulation of both quantity and quality of peri-implant bone may be viable options to improve implant fixation and patient outcomes.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 43 - 43
1 Aug 2012
AL-Hazaimeh N Beattie J Duggal M Yang X
Full Access

Angiogenesis and the ability to provide appropriate vascular supply are crucial for skeletal tissue engineering. The aim of this study was to investigate the angiogenic potential of human dental pulp stromal cells (HDPSCs) and stro-1 positive populations as well as their role in tissue regeneration (the clinical reality).

HDPSC were isolated from the pulp tissues of human permanent teeth by collagenase digestion. STRO-1 positive cells were enriched using monoclonal anti- STRO-1 and anti- CD45 PE conjugated antibodies together with and fluorescence activated cell sorting (FACS). Cells isolated by FACS were grown to passage4 and cultured as monolayers or on 3D Matrigel scaffold in endothelial cell growth medium-2 (EGM-2) with/without 50ng/mL of vascular endothelial growth factor (VEGF). Cells cultured in alpha MEM supplemented with 10% FCS were used as controls. After 24, 48 and 72 hours angiogenic marker expression (CD31, CD34, vWF and VEGFR-2) was determined by qRT-PCR and immuno-histochemistry.

Using three different donors, 0.5-1.5% of total HDPSCs population was characterized as STRO-1+/CD45- cells At each time point cells cultured as monolayer in EGM-2 with VEGF showed up regulation of CD31 and VEGFR-2 expression compared to the control group while expression of CD34 and vWF remained unaffected. However on Matrigel, all four genes were up regulated to different extents. CD31 and VEGFR-2 were up regulated to a greater degree compared to CD34 and vWF. Changes in gene expression in both cell types were time dependent. Immuno-histochemical staining confirmed that the HDPSCs cultured in the test group showed positive staining for the four angiogenic markers (CD31, CD34 vWF and VEGFR-2) when grown in both monolayer and 3D Matrigel culture compared to control cultures. When cultured on Matrigel (but not Monolayer) for 7 days, HDPSC formed tube-like structures in the VEGF treated group.

This indicates the potential of use HDPSCs and their STRO-1 positive population for angiogenesis to enhance skeletal tissue repair and/or regeneration toward translational research for clinical benefit.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 3 - 3
1 May 2012
EL-Gendy R Boccaccini A Newby P Kirkham J Yang X
Full Access

Stromal cells derived from human dental pulp (HDPSCs) are of current interest for applications in skeletal tissue engineering. Angiogenesis and revascularization of bone grafts or bone constructs in vivo are of paramount importance for bone tissue regeneration and/or fracture healing. The aim of this study was to investigate the angiogenic and osteogenic potential of HDPSCs in combination with Bioglass¯ scaffolds in vitro and in vivo.

HDPSCs, isolated by collagenase digestion, were either maintained as monolayers or dynamically seeded on 3D Bioglass¯ scaffolds and cultured under either basal or osteogenic conditions for 2 and 4 weeks. Expression of osteogenic (COL1A1, ALP, RUNX2 and OC) and angiogenic markers (VEGFR2, CD34 and PECAM1) was determined using qRT-PCR. Alternatively, constructs were either cultured in vitro under basal/osteogenic conditions for 6 weeks or sealed in diffusion chambers which were then implanted intraperitoneally in immunosuppressed mice for 8 weeks. Retrieved constructs were fixed and embedded for histology and immunohistochemistry using antibodies against COL1, RUNX2, OC, VEGFR2, CD34 and PECAM1. qRT-PCR showed no significant differences in gene expression of osteogenic markers between basal and osteogenic media for both 3D construct and monolayers.

However when comparing 3D constructs to monolayers: COL1A1 showed a significantly lower expression (p< 0.05) in 3D compared to 2D at 2 weeks in both culture conditions, and this pattern was reversed after 4 weeks. ALPL was significantly lower in 3D constructs at 2 weeks under both conditions (p<0.01), and was significantly higher in basal conditions at 4 weeks (p<0.05). RUNX2 showed higher expression in 3D constructs at all time points and under both conditions while OC showed lower expression in 3D constructs at 2 weeks and higher expression at 4 weeks under both conditions. For the angiogenic markers, 3D constructs under osteogenic conditions showed an increase of expression in VEGFR2 and PECAM1 at 2 weeks followed by a decrease at week 4, while CD34 expression was undetected in 3D constructs at all times and under both sets of culture conditions. The expression of VEGFR2 and PECAM 1 under both conditions and at both time points was greater in 3D constructs compared to monolayers. After 8 weeks, the in vivo retrieved constructs showed no signs of inflammatory reactions. Immunohistology confirmed positive staining of osteogenic and angiogenic markers in 3D constructs from both in vitro and in vivo experiments with a greater staining intensity seen in the in vivo constructs. Furthermore, the in vivo constructs showed more intense sirius red staining and higher intensity of immunostaining using antibodies to type 1 collagen, with higher calcification as indicated by alizarin red staining.

In conclusion, this study indicated that a combination of HDPSCs and Bioglass¯ scaffolds has potential to provide a suitable microenvironment for angiogenic and osteogenic differentiation of HDPSCs which is essential for bone regeneration in preclinical and/or clinical applications.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 29 - 29
1 May 2012
Zou H Brookes S Lyngstadaas S Boccaccini A Tsiridis E Seedhom B Yang X
Full Access

Objective

Human bone marrow stromal cells (HBMSCs) are multipotent and can form bone, cartilage or other tissues under different inductive conditions. The aim of this study was to investigate the effects of enamel matrix derivative (EMD) on the growth and osteogenic differentiation of HBMSCs.

Methods

HBMSCs were cultured in monolayer with EMD (1, 10, 50,100, 250μg/ml) in aMEM supplemented with 2% FBS for 3 days. Cells cultured in aMEM supplemented with 2% FBS (basal medium) served as the control group. Double-stranded DNA was quantified by PicoGreen assay. Quantitative RT-PCR was performed to determine the expression levels of RUNX2, osteopontin (OPN) and osteocalcin (OCN), dentin matrix protein1 (DMP1) and dentin sialophosphoprotein (DSPP) at different time points (day 0, 5 and 10) when exposed to 10μg/ml EMD or basal medium. Alkaline phosphatase specific activity (ALPSA) was determined after 5 and 10 days culture. Mineral deposition (as calcium) was visualised using Alizarin Red staining.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 19 - 19
1 May 2012
Mohanram Y Kirkham J Yang X
Full Access

Introduction

P-15 (GTPGPQGIAGQRGVV), a fifteen residue synthetic peptide, is a structural analogue of the cell binding domain of Type 1 collagen and creates a biomimetic environment for bone repair when immobilized on anorganic bovine mineral (ABM) scaffolds. ABM-P-15 scaffolds have been shown to enhance bone marrow stromal cell growth and differentiation. This study aimed at evaluating the osteogenic potential of human dental pulp stromal cells (HDPSCs) compared to human bone marrow stromal cells (HBMSCs) in monolayer and on 3D ABM-P-15 scaffolds in vitro and in vivo.

Materials and Methods

HDPSCs and HBMSCs were cultured as monolayers in basal or osteogenic media for 3 weeks. Osteogenic differentiation was confirmed using alkaline phosphatase (ALP) staining and ALP specific activity (ALPSA). In addition, the presence and distribution of osteogenic markers including Type 1 collagen, bone sialoprotein (BSP), osteopontin (OPN) and osteocalcin (OCN) was determined by immunohistochemisty. Gene expression for COL1, RUNX2 and OCN was determined using RT-PCR after 1, 3 and 5 weeks in basal culture. For 3D culture, HDPSCs were seeded on ABM scaffolds ± P-15 (CeraPedics LLC) and cultured in basal media for 6 weeks. Cell viability and growth were visualized by confocal and scanning electron microscopy. Osteogenic differentiation was confirmed by ALP staining and ALPSA. For in vivo studies, HDPSCs were injected and sealed in diffusion chambers containing ABM-P-15 or ABM alone which were then implanted intraperitoneally in nude mice for 8 weeks. The retrieved samples were then processed for histology.