Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 68 - 68
1 Feb 2020
Gascoyne T Pejhan S Bohm E Wyss U
Full Access

Background

The anatomy of the human knee is very different than the tibiofemoral surface geometry of most modern total knee replacements (TKRs). Many TKRs are designed with simplified articulating surfaces that are mediolaterally symmetrical, resulting in non-natural patterns of motion of the knee joint [1]. Recent orthopaedic trends portray a shift away from basic tibiofemoral geometry towards designs which better replicate natural knee kinematics by adding constraint to the medial condyle and decreasing constraint on the lateral condyle [2]. A recent design concept has paired this theory with the concept of guided kinematic motion throughout the flexion range [3]. The purpose of this study was to validate the kinematic pattern of motion of the surface-guided knee concept through in vitro, mechanical testing.

Methods

Prototypes of the surface-guided knee implant were manufactured using cobalt chromium alloy (femoral component) and ultra-high molecular weight polyethylene (tibial component). The prototypes were installed in a force-controlled knee wear simulator (AMTI, Watertown, MA) to assess kinematic behavior of the tibiofemoral articulation (Figure 1). Axial joint load and knee flexion experienced during lunging and squatting exercises were extracted from literature and used as the primary inputs for the test. Anteroposterior and internal-external rotation of the implant components were left unconstrained so as to be passively driven by the tibiofemoral surface geometry. One hundred cycles of each exercise were performed on the simulator at 0.33 Hz using diluted bovine calf serum as the articular surface lubricant. Component motion and reaction force outputs were collected from the knee simulator and compared against the kinematic targets of the design in order to validate the surface-guided knee concept.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 299 - 299
1 Dec 2013
Dyrkacz R Wyss U Brandt J Turgeon T
Full Access

Introduction

This retrieval analysis study consisted of two goals. The first goal was to determine if there was a difference in the corrosion and fretting damage along the taper interface between large femoral heads in comparison to monopolar hemiarthroplasty heads. The second goal was to examine if the diameter of monopolar hemiarthroplasty heads can influence corrosion and fretting damage along the taper interface.

Patients and Methods

This retrieval analysis compared the corrosion and fretting behaviour of 40 mm femoral heads (n = 13) to monopolar hemiarthroplasty heads (n = 17 for a diameter < 50 mm; n = 6 for a diameter ≥ 50 mm) such that all implants had a minimum implantation period of three months, a 12/14 mm taper, and the heads and stems consisted of CoCr alloy. The 40 mm heads articulated with a polyethylene cup whereas the monopolar hemiarthroplasty heads articulated with cartilage. The 40 mm heads were manufactured from one company whereas the monopolar hemiarthroplasty heads were manufactured from four different companies. Corrosion and fretting damage were assessed using a previous technique [1]. Table 1 lists the patient information and reasons for revision whereas Table 2 provides the implant information.

The Mann Whitney U test and the Kruskal-Wallis test were performed for identifying significant differences for corrosion and fretting scores that were not normally distributed (α = 0.05). An unpaired student's t-test was conducted for comparing the head corrosion scores for the two head size groups of monopolar hemiarthroplasty implants since these scores were normally distributed.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 2 - 2
1 Jun 2012
Acker S Kutzner I Bergmann G Deluzio K Wyss U
Full Access

Accurate in vivo knee joint contact forces are required for joint simulator protocols and finite element models during the development and testing of total knee replacements (Varadarajan et al., 2008.) More accurate knowledge of knee joint contact forces during high flexion activities may lead to safer high flexion implant designs, better understanding of wear mechanisms, and prevention of complications such as aseptic loosening (Komistek et al., 2005.) High flexion is essential for lifestyle and cultural activities in the developing world, as well as in Western cultures, including ground-level tasks and chores, prayer, leisure, and toileting (Hemmerich et al., 2006.) In vivo tibial loads have been reported while kneeling; but only while the subject was at rest in the kneeling position (Zhao et al., 2007), meaning that the loads were submaximal due to muscle relaxation and thigh-calf contact support. The objective of this study was to report the in vivo loads experienced during high flexion activities and to determine how closely the measured axial joint contact forces can be estimated using a simple, non-invasive model. It provides unique data to better interpret non-invasively determined joint-contact forces, as well as directly measured tiobiofemoral joint contact force data for two subjects.

Two subjects with instrumented tibial implants performed kneeling and deep knee bend activities. Two sets of trials were carried out for each activity. During the first set, an electromagnetic tracking system and two force plates were used to record lower limb kinematics and ground reaction forces under the foot and under the knee when it was on the ground. In the second set, three-dimensional joint contact forces were directly measured in vivo via instrumented tibial implants (Heinlein et al., 2007.) The measured axial joint contact forces were compared to estimates from a non-invasive joint contact force model (Smith et al., 2008.)

The maximum mean axial forces measured during the deep knee bend were 24.2 N/kg at 78.2° flexion (subject A) and 31.1 N/kg at 63.5° flexion (subject B) during the deep knee bend (Figure 1.) During the kneeling activity, the maximum mean axial force measured was 29.8 N/kg at 86.8° flexion (subject B.) While the general shapes of the model-estimated curves were similar to the directly measured curves, the axial joint contact force model underestimated the measured contact forces by 7.0 N/kg on average (Figure 2.) The most likely contributor to this underestimation is the lack of co-contraction in the model.

The study protocol was limited in that data could not be simultaneously collected due to electromagnetic interference between the motion tracking system and the inductively powered instrumented tibial component. Because skin-mounted markers were used, kinematics may be affected by skin motion artefacts. Despite these limitations, this study presents valuable information that will advance the development of high flexion total knee replacements. The study provides in vivo measurements and non-invasive estimates of joint contact forces during high flexion activities that can be used for joint simulator protocols and finite element modeling.