To achieve a long-lasting fixation of uncemented femoral knee implants, an adequate primary stability is required. Several factors, including the applied load, bone quality, surgical preparation, and implant characteristics affect the primary fixation. Recently, novel Attune® cementless femoral component has been proposed by DePuy Synthes (Warsaw, IN, USA). We aimed to compare the primary stability of this novel high-flex design against the conventional LCS® under different loading conditions (gait, deep knee bend (DKB), and high-flex loading), while accounting for the effect of bone quality and cut accuracy. Six pairs of femora were prepared following the normal surgical procedure. Calibrated CT-scans and 3D-optical scans of the bones were obtained to measure bone mineral density (BMD) and bone cut accuracy, respectively. After implantation of the appropriate size implants (Left legs: Attune; right: LCS), a black-and-white speckle pattern was applied to each specimen (Fig.1B). The micromotion measurement was repeated three times in nine regions of interest (ROIs): the medial and lateral condyles from the posterior view; anterior, distal, and posterior regions from the medial and lateral views; the proximal tip of the anterior flange. The reconstructions were subjected to a gait load and a portion (around 50%) of the peak force of a DKB to prevent fracture of the proximal femur (Fig. 1A and Table. 1). The loads were derived from the Orthoload database using implant-specific inverse dynamics [1]. In addition, a sequence of DIC-images synchronized with the applied load was captured to find the relationship between micromotion and load. Afterwards, implants were pushed-off simulating 150° of flexion, while force-displacement graph was recorded. BMD and bone cut accuracy were not significantly different between the groups. Under both loading conditions, Attune had a significantly lower micromotion (Table. 1). Cut accuracy was not a significant factor, and BMD was only significant for the comparison under the gait loading (not under DKB conditions). High-flex push-off force was not significantly different. However, Attune required a significantly higher load to reach a micromotion of 50 or 150 µm during the push-off test. Different relations between micromotion and applied load, depending on the loading configuration and implant design, were found (Fig. 2). Our study has shown a clearly lower range of micromotion for the novel implant. Potential factors to explain the higher micromotion of LCS are parallel anterior and posterior bone cuts in the LCS versus the tapered bone cuts of the Attune. In addition, LCS has a less surface area in contact with bone due to the presence of a rim at the borders of the implant, which may have resulted in lower pre-stresses at the bone-implant interface. Taking to account, the promising clinical outcome of LCS and also the lower range of micromotion of Attune, we suggest that the Attune has a potential to be at least as successful as the LCS system from a bone fixation point of view. However, further clinical evaluation of the Attune is necessary to assess its performance on the longer term.
Complications of the patellofemoral (PF) joint remain a common cause for revision of total knee replacements. PF complications, such as patellar maltracking, subluxation, dislocation and implant failure, have been linked to femoral and patellar component alignment. Computational analyses represent an efficient method for investigating the effects of patellar and femoral component alignment and loading on output measures related to long term clinical success (i.e. kinematics, contact mechanics) and can be utilized to make direct comparisons between common patellar component design types. Prior PF alignment studies have generally involved perturbing a single alignment parameter independently, without accounting for interaction effects between multiple parameters. The objective of the current study was to determine critical alignment parameters, and combinations of parameters, in three patellar component designs, and assess whether the critical parameters were design specific. A dynamic finite element (FE) model of an implanted PF joint was applied in conjunction with a 100-trial Monte Carlo probabilistic simulation to establish relationships between alignment and loading parameters and PF kinematics, contact mechanics and internal stresses (Figure 1). Seven parameters, including femoral internal-external (I-E) alignment, patellar I-E, flexion-extension (F∗∗∗∗∗E) and adduction-abduction (A-A) rotational alignment, and patellar medial-lateral (M-L) and superior-inferior (S-I) translational alignment, as well as percentage of the quadriceps load on the vastus medialis obliquus (VMO) tendon, were perturbed in the probabilistic analysis. Ten output parameters, including 6-DOF PF kinematics, peak PF contact pressure, contact area, peak von Mises stress and M-L force due to contact, were evaluated at 80 intervals during a simulated deep knee bend. Three types of patellar component designs were assessed; a dome-compatible patellar component (dome), a medialized dome-compatible patellar component (modified dome), and an anatomic component (anatomic). Model-predicted bounds at 5 and 95% confidence levels were determined for each output parameter throughout the range of femoral flexion (Figure 2). Traditional sensitivity analysis, in addition to a previously described coupled probabilistic and principal component analysis (probabilistic-PCA) approach, were applied to determine the relative importance of alignment and loading parameters to knee mechanics in each of the three designs. The dome component demonstrated the least amount of variation in contact mechanics and internal stresses, particularly in the 30–100° flexion range, with respect to alignment and loading variability. The modified dome had substantially reduced M-L contact force when compared with the dome. The anatomic design, while wide bounds of variability were predicted, had consistently greater contact area and lowered contact pressure than the dome and modified dome designs. The anatomic design also reproduced more natural sagittal plane patellar tilt than the other components. All three designs were most sensitivity to femoral I-E alignment. Thereafter, sensitivity to component alignment was design specific; for the anatomic component, the main alignment parameter was F-E, while for the domed components it was a combination of F-E and translation (M-L and S-I) (Figure 3). Understanding the relationships and design-specific dependencies between alignment parameters can add value to surgical pre-operative planning, and may help focus instrumentation design on those alignment parameters of primary concern.
Fragmentation of SLRPs, including decorin, biglycan, lumican, keratocan and fibromodulin, has been shown to occur in osteoarthritic articular cartilage. We have previously shown an increased expression of lumican and keratocan, in osteoarthritic articular cartilage. The long-term aim of this project is to develop ELISAs for the detection of SLRP metabolites, and validate these potential biomarkers with synovial fluid and serum samples from a large cohort of normal and osteoarthritic patients. Initially, we aimed to determine whether SLRPs could be detected in synovial fluid and whether they were post-translationally modified with glycosaminoglycan (GAG) attachments; and whether bovine nasal cartilage (BNC) would be a plentiful source of native SLRP for ELISA development. Proteoglycans were extracted from BNC in guanidine hydrochloride. BNC extract and bovine synovial fluid was separated on an associative CsCl gradient. BNC CsCl cuts containing sulphated GAG were further purified using anion exchange chromatography. SLRPs in each fraction were detected using Western Blotting. Human recombinant lumican was expressed in Chinese hamster ovary (CHO) cells. Monoclonal antibodies that recognise epitopes on the core protein of human and bovine lumican and decorin were purified from hybridoma media using Protein G and Protein A affinity chromatography respectively. Monoclonal antibody activity against native and recombinant SLRPs was then determined using a direct ELISA. Preliminary tests showed that bovine synovial fluid contains keratocan and lumican with GAG attachments. BNC is a good source of post-translationally modified decorin, keratocan and biglycan but lumican was present predominantly without GAG attachments. Human recombinant lumican was successfully expressed with GAG attachments by CHO cells. Initial tests showed that the mAb against decorin was able to detect native decorin, with GAG attachments, in direct ELISA conditions. We have identified a plentiful source of native SLRP and begun ELISA development to ascertain whether these proteoglycans are potential biomarkers of OA.
The study was designed to observe the patients emotional and physical response to total disc replacement surgery in the cervical spine. A prospective cohort study of patients undergoing Cervical total disc replacement (TDR) surgery at our institution. Surgery was carried for radicular and or axial neck pain. The Activ-C TDR (Aesculap) was used. Pre and post operative data was collected using validated questionnaires. 13 Consecutive patients from Nov 2007 to Aug 2008 were studied. All patients were planned for surgical intervention for symptomatic degenerative cervical disc disease at single or multiple levels. 7 male, 6 female. The Centre for Epidemiological Studies Depression Scale (CES-D) was used to assess the psychological impact. The Neck Disability Index (NDI) and a visual analogue scale (VAS) were used to assess the physical impact of the surgery. NDI shows a significant improvement at 6 and 12 months (p= 0.002 and p=0.02 respectively). The VAS also shows significant improvement at 6 and 12 months (p=0.004 and 0.008 respectively) The CES-D improved but failed to show any significant improvement at either interval. In our patient population surgical intervention with TDR for degenerative disc disease offers significant physical benefit over the short term. This does not correlate with an improvement in their emotional state.