The wear rate of Ultra High Molecular Weight Polyethylene (UHMWPE) in joint replacements has been correlated to both contact area and contact stress in the literature, [1], [2]. In both publications and our experiment, UHMWPE articulated with a polished surface of cobalt-chromium alloy was evaluated using a Pin-On-Disk (POD) apparatus (AMTI) implementing bi-directional movement. In publication [1], volumetric wear was independent of normal load and dependent upon increasing contact area. The results demonstrated that increasing contact stress In our experiment, the contact area was dependent on textured POD Pin 390 (T390) which had low wear [3]. T390 reduced the normal POD contact area from 71 mm2 to 8.26 mm2. Hydroxylapatite (HA) particles were introduced to the serum to simulate third body wear debris. We hypothesized that the normal POD Pins would have greater wear rates than the textured POD Pins. A measurement of 0.14 mg HA particles per 250 mL of serum was used for each test 0.33 million cycles. The GUR 1020 resin XLK POD Pins were gamma irradiated to 50 kGy in a vacuum package and then remelted. Three (3) T390 POD pins and nine (9) untextured XLK POD Pins were used. Three untextured XLK POD Pins were tested against three T390 POD pins. The other six (6) untextured XLK POD Pins were used as soak controls. Each pin articulated against a polished, high carbon wrought CoCr metal alloy counterface (ASTM F1537; diameter = 38.1 mm; thickness = 12.7 mm). Wear rate tests were for 1.98 million cycles. In order to perform the t-test analysis, the wear rates for each pin were given by the slope of the linear regression line through the individual data points (cycle count, cumulative wear), excluding the (0, 0) point.Statement of Purpose:
Methods: