header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 127 - 127
1 Apr 2012
Luo J Gibson J Robson-Brown K Annesley-Williams D Adams M Dolan P
Full Access

To investigate whether restoration of mechanical function and spinal load-sharing following vertebroplasty depends upon cement distribution.

Fifteen pairs of cadaver motion segments (51-91 yr) were loaded to induce fracture. One from each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Various mechanical parameters were measured before and after vertebroplasty. Micro-CT was used to determine volumetric cement fill, and plane radiographs (sagittal, frontal, and axial) to determine areal fill, for the whole vertebral body and for several specific regions. Correlations between volumetric fill and areal fill for the whole vertebral body, and between regional volumetric fill and changes in mechanical parameters following vertebroplasty, were assessed using linear regression.

For Cortoss, areal and volumetric fills were significantly correlated (R=0.58-0.84) but cement distribution had no significant effect on any mechanical parameters following vertebroplasty. For PMMA, areal fills showed no correlation with volumetric fill, suggesting a non-uniform distribution of cement that influenced mechanical outcome. Increased filling of the vertebral body adjacent to the disc was associated with increased intradiscal pressure (R=0.56, p<0.05) in flexed posture, and reduced neural arch load bearing (FN) in extended posture (R=0.76, p<0.01). Increased filling of the anterior vertebral body was associated with increased bending stiffness (R=0.55, p<0.05).

Cortoss tends to spread evenly within the vertebral body, and its distribution has little influence on the mechanical outcome of vertebroplasty. PMMA spreads less evenly, and its mechanical benefits are increased when cement is concentrated in the anterior vertebral body and adjacent to the intervertebral disc.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_I | Pages 30 - 30
1 Jan 2012
Luo J Annesley-Williams D Adams M Dolan P
Full Access

Introduction

Osteoporotic fracture reduces vertebral stiffness, and alters spinal load-sharing. Vertebroplasty partially reverses these changes at the fractured level, but is suspected to increase deformations and stress at adjacent levels. We examined this possibility.

Methods

Twelve pairs of three-vertebra cadaver spine specimens (67-92 yr) were loaded to induce fracture. One of each pair underwent vertebroplasty with PMMA, the other with a resin (Cortoss). Specimens were then creep-loaded at 1.0kN for 1hr. In 15 specimens, either the uppermost or lowest vertebra was fractured, so that compressive stress distributions could be determined in the disc between adjacent non-fractured vertebrae. Stress was measured in flexion and extension, at each stage of the experiment, by pulling a pressure-transducer through the disc whilst under 1.0kN load. Stress profiles quantified intradiscal pressure (IDP), stress concentrations in the posterior annulus (SPP), and compressive load-bearing by the neural arch (FN). Elastic deformations in adjacent vertebrae were measured using a MacReflex tracking system during 1.0kN compressive ramp loading.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_I | Pages 29 - 29
1 Jan 2012
Luo J Annesley-Williams D Adams M Dolan P
Full Access

Introduction

Vertebral osteoporotic fracture increases both elastic and time-dependent (‘creep’) deformations of the fractured vertebral body during subsequent loading. This is especially marked in central and anterior regions of the vertebral body, and could explain the development of kyphotic deformity in life. We hypothesise that vertebroplasty can reduce these creep deformations.

Methods

Twelve pairs of spine specimens, each comprising three vertebrae and the intervening soft tissue, were obtained from cadavers aged 67-92 yr. They were compressed to failure, after which one of each pair underwent vertebroplasty with polymethylmethacrylate cement, the other with a resin (Cortoss). A 1kN compressive force was applied for 1 hour before fracture, after fracture, and after vertebroplasty, while creep deformation was measured in the anterior, middle, and posterior region of each vertebral body using a MacReflex optical tracking system.