Platelet Rich Plasma (PRP) has been shown to have positive effect in tendon regeneration in in-vitro and limited in-vivo animal studies. We aim to study PRP use in acute Achilles tendon rupture (ATR) regeneration in a purposely designed clinical trial. This is a prospective double-arm patient-blinded randomized controlled trial. ATR patients were randomized into PRP treatment or control groups. Non-operatively treated patients received PRP or control injection in clinic. In operatively treated patients, PRP gel was applied in the ruptured gap during percutaneous repair. Standard rehabilitation protocol was used and patients were followed up for 24 weeks. ATR, VISA-A and FAOS scores were used as subjective outcome measures. Functional ultrasound Elastography (FUSE) was performed at each follow-up to assess the mechanical properties of tendons. PRP analysis and tendon needle-biopsy were performed to study the histological differences during healing in both groups.Purpose
Methods
It has been suggested that the transition phases of implementing daylight saving time (DST) may impact on serious or fatal injuries sustained as the result of road traffic collision (RTC). The aim of this study is to explore the effects of transitions into and out of daylight saving time on the incidence of such injuries. This is a retrospective comparative observational study of 11-year of data submitted prospectively to the Trauma Audit Research Network (TARN) between 1996 and 2006. Data for 4 weeks before and after time transition in spring and autumn of each year was collected. The time periods selected reflect those hours with maximum light level changes due to time alterations (2-hour around sunrise and 4-hour around sunset). Travellers outside those hours are unlikely to be affected by the changes.Introduction
Method
Functional ultrasound Elastography (FUSE) of Tendo Achilles is an ultrasound technique utilising controlled, measurable movement of the foot to non-invasively evaluate TA elastic and load-deformation properties. The study purpose is to assess Achilles tendons, paratenon and bursa mechanical properties in healthy volunteers and establish an outcome tool for TA treatment. Forty asymptomatic Achilles tendons of 20 healthy volunteers were recruited (10 men and 10 women, age range 18-55). One patient with Acute Achilles rupture scanned to evaluate the tendon gap. Each volunteer answered the Foot and Ankle Outcome Score (FAOS) and Victorian Institute Sport Assessment score (VISA-A) questionnaires. The Achilles Tendons were divided into three thirds (total 120 Proximal, middle and distal thirds). Three longitudinal images of each third were obtained using portable US scan device (Z.one, Zonare Medical System Inc., USA, 8.5 MHz). Images processing was achieved using a MatLAb software (developed by the research team) in parallel Oxford university computers. Each 1/3rd Achilles tendon under went the following scans:
Free hand US scan Free hand Compression decompression Elastography scan Dorsal Flexion elastography Planter flexion elastography Zonare real-time Elastography Elastography scan with the Oxford isometric dynamic foot and Ankle mover (OIDFA) B mode and elasticity images were derived from the raw ultrasound radio frequency data. The anatomical structures mechanical properties were evaluated by a quantitative score of different colours representing stiff tissue (blue) to more soft tissue (green, yellow, red).Purpose
Methods
The use of platelet-rich concentrate (PRC) to enhance the healing response in tendon repair is currently an area of considerable interest. Activated platelets release a cocktail of growth factors and ECM regulating molecules. Previous work suggests that tenocytes are activated by contact with these clot-derived molecules. Our studies on tenocytes and PRC aim to establish the direct molecular and functional effects of PRC on tenocytes and to support the clinical research on Achilles tendon repair taking place within our group. We hypothesise that applying PRC to human tenocytes in culture will increase proliferation rate and survival by activating relevant signalling pathways. Using a centrifugation method, PRC was extracted from fresh human whole blood. The PRC was immediately clotted and left in medium overnight to release biological factors (at least 95% of presynthesized growth factors are secreted in the first hour of activation)1. Human tenocytes derived from explanted healthy hamstring were used for up to three passages. Cells were treated with varying concentrations of PRC-conditioned medium and assessed for viable cell number (Alamar Blue™ fluorescence) and proliferation (Ziva™ Ultrasensitive BrdU assay) after 72hrs. For western blotting, cells were treated with 10% PRC for 5 or 30 minutes. Antibodies to P-ERK and P-Akt detected the active protein state on the blot, followed by membrane stripping and re-probing with pan antibodies. Quantification was achieved by densitometry using Visionworks software v. 6.7.1.Introduction
Materials and Methods