To investigate the histological and immunohistochemical characteristics of revised and failed MACI repair tissues. We examined the matrix profiles of repair biopsies taken from revised and clinically failed MACI cases by semi-quantitative immunohistochemical study using antibodies specific to aggrecan, collagens I, II, III, VI, and IX, Sox-9, Ki-67 and MMP-13. We also stiffness tested an intact clinically failed repair site.Objective
Methods
Large and retracted rotator cuff tendon tears fail to repair, or re-tear following surgical intervention. This study attempted to develop novel tissue engineering approaches using tenocytes-seeded bioscaffolds for tendon reconstruction of massive rotator cuff tendon defect in rabbits. Porcine small intestine submucosa (Restore™) and type I/III collagen bioscaffold (ACI-MaixTM) were chosen as bioscaffold carriers for autologous tenocytes. Biological characterization of autologous tenocytes was conducted prior to the implantation. The tenocyte-seeded bioscaffolds were implanted as interposition grafts to reconstruct massive rotator cuff tendon defects in rabbits. In situ re-implantation of the autologous rotator cuff tendon, excised during defect creation served as a positive control. Histological outcomes were analysed and semi-quantitatively graded at four and eight weeks after surgery. The results demonstrate that at four weeks both tenocyte-seeded bioscaffolds display inflammatory reaction similar to bioscaffold-only cuff reconstruction and the histological grading were inferior to control repair. However, at eight weeks inflammatory reaction of both tenocyte-seeded bioscaffolds were dramatically reduced as compared to bioscaffold alone. In addition, bioscaf-folds seeded with tenocytes generated similar histological appearance to that of the positive control. The implantation of autologous tenocytes on collagen-based bioscaffold offers improved rotator cuff tendon healing and remodelling compared to the implantation of bioscaffold alone.