Component mal-positioning in total hip replacement (THR) and total knee replacement (TKR) can increase the risk of revision for various reasons. Compared to conventional surgery, relatively improved accuracy of implant positioning can be achieved using computer assisted technologies including navigation, patient-specific jigs, and robotic systems. However, it is not known whether application of these technologies has improved prosthesis survival in the real-world. This study aimed to compare risk of revision for all-causes following primary THR and TKR, and revision for dislocation following primary THR performed using computer assisted technologies compared to conventional technique. We performed an observational study using National Joint Registry data. All adult patients undergoing primary THR and TKR for osteoarthritis between 01/04/2003 to 31/12/2020 were eligible. Patients who received metal-on-metal bearing THR were excluded. We generated propensity score weights, using Sturmer weight trimming, based on: age, gender, ASA grade, side, operation funding, year of surgery, approach, and fixation. Specific additional variables included position and bearing for THR and patellar resurfacing for TKR. For THR, effective sample sizes and duration of follow up for conventional versus computer-guided and robotic-assisted analyses were 9,379 and 10,600 procedures, and approximately 18 and 4 years, respectively. For TKR, effective sample sizes and durations of follow up for conventional versus computer-guided, patient-specific jigs, and robotic-assisted groups were 92,579 procedures over 18 years, 11,665 procedures over 8 years, and 644 procedures over 3 years, respectively. Outcomes were assessed using Kaplan-Meier analysis and expressed using hazard ratios (HR) and 95% confidence intervals (CI).Abstract
Introduction
Methods
IL-1β stimulation of human OA chondrocytes induces NFκB, ERK1/2, c-JUN, IκB and P38 signalling pathways. Pre-treatment with cannabinoid WIN-55 for 48 hours inhibits certain pathways, providing mechanisms for cannabinoids inhibitory actions on IL-1β induced cartilage degradation. Matrix metalloproteinases (MMPs) are involved in extracellular matrix (ECM) breakdown in osteoarthritis (OA) and their expression is regulated by nuclear factor kappa B (NFκB). In addition signalling pathways ERK1/2, c-JUN, IκB and P38 are activated in OA and are induced by inflammatory cytokine interleukin 1 (IL-1). Cannabinoids have been shown to reduce joint damage in animal models of arthritis. Synthetic cannabinoid WIN-55, 212-2 mesylate (WIN-55) significantly reduces IL-1β induced expression of MMP-3 and -13 in human OA chondrocytes, indicating a possible mechanism via which cannabinoids may act to prevent ECM breakdown. Here the effects of WIN-55 on IL-1β induced NFκB, ERK1/2, c-JUN, IκB and P38 phosphorylation in human OA chondrocytes has been investigated. Primary human chondrocytes were obtained from articular cartilage removed from patients with symptomatic OA during total knee replacement (Ethic approval:SMB002). Cartilage tissue was graded macroscopically 0–4 using the Outerbridge Classification method. Chondrocytes isolated from grade 2 cartilage and cultured in monolayer were pre-treated with 10 μM WIN-55 for 1 hour prior to stimulation with 10 ng/ml IL-1β for 30 minutes for investigation of NFκB, c-JUN, IκB and P38 phosphorylation. In addition chondrocytes were pre-treated with 10 μM WIN-55 for 30 minutes, 1, 3, 6, 24 and 48 hours prior to 10 ng/ml IL-1β stimulation for 30 minutes to investigate ERK1/2 phosphorylation. Dimethyl sulfoxide (DMSO) was used as a vehicle control at 0.1%. Immunocytochemistry was used to investigate the phosphorylation and translocation of NFκB. ERK1/2, c-JUN, IκB, and P38 activation was investigated using cell based ELISA. Immunocytochemical analysis showed chondrocytes stimulated with IL-1β induced NFκB phosphorylation and translocation to the nucleus. Chondrocytes treated with IL-1β with WIN-55 for 1 hour pre-treatment showed no inhibition of the IL-1β induced NFκB phosphorylation and translocation to the nucleus. WIN-55 treatment alone for 1 hour stimulated NFκB phosphorylation in the cytoplasm but not the nucleus. ELISA showed that phosphorylation of ERK1/2, c-JUN, IκB, and P38 was significantly induced by IL-1β following 30 minutes stimulation (p<0.05). Pre-treatment with WIN-55 for 1 hour had no significant effect on this IL-1β induced phosphorylation. However WIN-55 pre-treatment for 48 hours prior to IL-1β stimulation for 30 minutes, resulted in a significant decrease in ERK1/2 phosphorylation compared to IL-1β stimulation alone (p<0.05). WIN-55 treatment alone for 1 hour significantly induced c-JUN phosphorylation (p<0.05), but had no effect on IκB and P38 phosphorylation compared to DMSO control. IL-1β stimulation of ERK1/2 phosphorylation was not significantly affected by WIN-55 pre-treatment of 30 minutes, 1, 3, 6 and 24 hours. WIN-55 treatment alone for 48 hours significantly reduced ERK1/2 phosphorylation compared to DMSO control (p<0.05). WIN-55 treatment alone for 30 min, 1, 3, 6 and 24 hours had no significant effect on ERK1/2 phosphorylation compared to DMSO control. The results show that following 48 hours pre-treatment WIN-55 inhibits IL-1β induced ERK1/2 phosphorylation in human OA chondrocytes. Thus inhibitory effects of cannabinoids on IL-1β induced cartilage degradation may be mediated via modulation of ERK1/2 signalling.Summary Statement
Bone related adverse events including failure of implant osseo-integration, periprosthetic fracture, femoral neck narrowing, and unexplained pain occur more frequently following metal-on-metal hip resurfacing (MoMHR) versus total hip arthroplasty (THA). The exact mechanism for the adverse effects is still unclear and may be due to the direct effect on bone cells of metal ions released from the prostheses. The aim of the present study was to determine the effect of clinically relevant combinations of metal ions on osteoblast cell survival and function. To assess cell proliferation and alkaline phosphatase (ALP) activity of osteoblasts, human osteoblast cells (SaOS-2), were cultured in 96-well plates for 24-hours and then treated with metal ions. Cell proliferation was measured at day 3 and day 7 using MTS assay, whilst ALP activity was assessed at day 3 by measuring pNPP substrate hydrolysis by the cell lysate. Mineralisation ability of the cells was assessed in 24-well plates cultured until day 21 and staining the calcium deposits using Alizarin red. All cultures were treated with the IC50 concentration of Co(II) (135μM) and an equivalent Cr(III) concentration (1Co(II):1Cr(III)). After 3 days, Co(II) at an IC50 concentration decreased osteoblast proliferation as expected, but no further decrease in proliferation was observed with the 1Co(II):1Cr(III) combination treatment. However, after 7 days, a further significant decrease (P<0.05) in proliferation was observed with the combination treatment compared to Co(II) IC50. A similar significant decrease (P<0.01) was observed for ALP activity at day 3 with 1Co(II):1Cr(III) compared to Co(II) alone. For mineralization, a significant reduction (P<0.0001) was observed for Co(II) IC50 concentration, however no further reduction was seen with the 1Co(II):1Cr(III) combination treatment. The observed decrease in cell proliferation and ALP activity with combination treatments suggest an additive detrimental effect compared to single ions alone. The mineralisation ability did not show any additive effect due to cell toxicity of chronic exposure to IC50 concentrations calculated from 3 day proliferation cultures. The results suggest that presence of both cobalt and chromium ions in the periprosthetic environment have more severe detrimental effect on osteoblasts than single ions alone and extend our understanding of the periprosthetic bone health.