Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 60 - 60
1 Sep 2012
Rampersad S Petit A Ruiz JC Wertheimer MR Antoniou J Mwale F
Full Access

Purpose

A major drawback of current cartilage and intervertebral disc (IVD) tissue engineering is that human mesenchymal stem cells (MSCs) from osteoarthritic (OA) patients express high levels of type X collagen. Type X collagen is a marker of late stage chondrocyte hypertrophy, linked with endochondral ossification, which precedes bone formation. However, it has been shown that a novel plasma-polymer, called nitrogen-rich plasma-polymerized ethylene (PPE:N), is able to inhibit type X collagen expression in committed MSCs. The aim of this study was to determine if the decreased expression of type X collagen, induced by the PPE:N surfaces is maintained when MSCs are removed from the surface and transferred to pellet cultures in the presence of serum and growth factor free chondrogenic media.

Method

Human MSCs were obtained from aspirates from the intramedullary canal of donors undergoing total hip replacement for OA. Cells were expanded for 2–3 passages and then cultured on polystyrene dishes and on two different PPE:N surfaces: high (H) and low (L) pressure deposition. Cells were transferred for 7 additional days in chondrogenic serum free media (DMEM high glucose supplemented with 2 mM L-glutamine, 20 mM HEPES, 45 mM NaHCO3, 100 U/ml penicillin, 100 ug/ml streptomycin, 1 mg/ml bovine serum albumin, 5 ug/ml insulin, 50 ug/ml ascorbic acid, 5 ng/ml sodium selenite, 5 ug/ml transferrin) in pellet culture or on PS cell culture dishes. RNA was extracted using a standard TRIzol protocol. RT-PCR was realized using Superscript II (RT) and Taq polymerase (PCR) with primers specific for type I and X collagen. GAPDH was used as a housekeeping gene and served to normalize the results.