Prosthetic joint infections (PJI) remain a great challenge in orthopedic surgery with a high mortality rate. It is particularly complicated by biofilms and infections caused by Methicillin-resistant We induced specific monoclonal antibodies 4497-IgG1 as carriers, which target wall teichoic acids (WTA) existing on MRSA and its biofilm. Radionuclides actiniumr-225 (225Ac, α-emitter) and lutetium-177 (177Lu, β-emitter) were conjugated with mAbs using DOTA as chelator. Quality control was assessed using thin layer chromatography and immunoreactivity assays. 225Ac- and 177Lu-labelled 4497-IgG1 were employed to evaluate the susceptibility of MRSA and its biofilm to the radioimmunotherapy in vitro. Planktonic MRSA and biofilms, at concentrations of 108 and 107 CFU/mL, were incubated at 37°C for 60 minutes in PBS containing either 225Ac-mAb (0 - 14.8 kBq) or 177Lu-mAb (0 - 14.8 MBq). Radiolabelled dunituximab and free radionuclides serve as isotype-matched negative control. The bacterial viability and metabolic activity were subsequently quantified using CFU and XTT assays.Aim
Method
Implant infections caused by 4497-IgG1targeting Aim
Methods
In the current study we aim to characterize the use of cationic host defense peptides (HDPs) as alternative antibacterial agents to include into novel antibacterial coatings for orthopedic implants. Staphyloccous aureus represent one the most challenging cause of infections to treat by traditional antibacterial therapies. Thanks to their lack of microbial resistance described so far, HDPs represent an attractive therapeutic alternative to antibiotics. Furthermore, HDPs have been showed to control infections via a dual function: direct antimicrobial activity and regulation of immune response. However, HDPs functions characterization and comparison is controversial, as changing test conditions or cell type used might yield different effects from the same peptide. Therefore, before moving towards the development of HDP-based coatings, we need to characterize and compare the immunomodulatory and antibacterial functions under the same conditions in vitro of 3 well-known cathelicidins: human LL-37, chicken CATH-2, and bovine-derived IDR-1018.
Aim
Method
The aetiologies of common degenerative spine, hip, and knee pathologies are still not completely understood. Mechanical theories have suggested that those diseases are related to sagittal pelvic morphology and spinopelvic-femoral dynamics. The link between the most widely used parameter for sagittal pelvic morphology, pelvic incidence (PI), and the onset of degenerative lumbar, hip, and knee pathologies has not been studied in a large-scale setting. A total of 421 patients from the Cohort Hip and Cohort Knee (CHECK) database, a population-based observational cohort, with hip and knee complaints < 6 months, aged between 45 and 65 years old, and with lateral lumbar, hip, and knee radiographs available, were included. Sagittal spinopelvic parameters and pathologies (spondylolisthesis and degenerative disc disease (DDD)) were measured at eight-year follow-up and characteristics of hip and knee osteoarthritis (OA) at baseline and eight-year follow-up. Epidemiology of the degenerative disorders and clinical outcome scores (hip and knee pain and Western Ontario and McMaster Universities Osteoarthritis Index) were compared between low PI (< 50°), normal PI (50° to 60°), and high PI (> 60°) using generalized estimating equations.Aims
Methods
Biodegradable metals as orthopaedic implant materials receive substantial scientific and clinical interest. Marketed cardiovascular products confirm good biocompatibility of iron. Solid iron biodegrades slowly in vivo and has got supra-physiological mechanical properties as compared to bone and porous implants can be optimized for specific orthopaedic applications. We used Direct Metal Printing (DMP)3 to additively manufacture (AM) scaffolds of pure iron with fine-tuned bone-mimetic mechanical properties and improved degradation behavior to characterize their biocompatibility under static and dynamic 3D culture conditions using a spectrum of different cell types. Atomized iron powder was used to manufacture scaffolds with a repetitive diamond unit cell design on a ProX DMP 320 (Layerwise/3D Systems, Belgium). Mechanical characterization (Instron machine with a 10kN load cell, ISO 13314: 2011), degradation behavior under static and dynamic conditions (37ºC, 5% CO2 and 20% O2) for up of 28 days, with μCT as well as SEM/energy-dispersive X-ray spectroscopy (EDS) (SEM, JSM-IT100, JEOL) monitoring under in vivo-like conditions. Biocompatibility was comprehensively evaluated using a broader spectrum of human cells according to ISO 10993 guidelines, with topographically identical titanium (Ti-6Al-4V, Ti64) specimen as reference. Cytotoxicity was analyzed by two-way ANOVA and post-hoc Tukey's multiple comparisons test (α = 0.05). By μCT, as-built strut size (420 ± 4 μm) and porosity of 64% ± 0.2% were compared to design values (400 μm and 67%, respectively). After 28 days of biodegradation scaffolds showed a 3.1% weight reduction after cleaning, while pH-values of simulated body fluids (r-SBF) increased from 7.4 to 7.8. Mechanical properties of scaffolds (E = 1600–1800 MPa) were still within the range for trabecular bone, then. At all tested time points, close to 100% biocompatibility was shown with identically designed titanium (Ti64) controls (level 0 cytotoxicity). Iron scaffolds revealed a similar cytotoxicity with L929 cells throughout the study, but MG-63 or HUVEC cells revealed a reduced viability of 75% and 60%, respectively, already after 24h and a further decreased survival rate of 50% and 35% after 72h. Static and dynamic cultures revealed different and cell type-specific cytotoxicity profiles. Quantitative assays were confirmed by semi-quantitative cell staining in direct contact to iron and morphological differences were evident in comparison to Ti64 controls. This first report confirms that DMP allows accurate control of interconnectivity and topology of iron scaffold structures. While microstructure and chemical composition influence degradation behavior - so does topology and environmental in vitro conditions during degradation. While porous magnesium corrodes too fast to keep pace with bone remodeling rates, our porous and micro-structured design just holds tremendous potential to optimize the degradation speed of iron for application-specific orthopaedic implants. Surprisingly, the biological evaluation of pure iron scaffolds appears to largely depend on the culture model and cell type. Pure iron may not yet be an ideal surface for osteoblast- or endothelial-like cells in static cultures. We are currently studying appropriate coatings and in vivo-like dynamic culture systems to better predict in vivo biocompatibility.
“Implant associated “We produced a set of 20 recombinant mAbs specific for staphylococcal antigens. Using flow cytometry and ELISA-based methods we determined the binding of these mAbs to planktonic staphylococci and Aim
Method
To retrospectively evaluate infection eradication rate of DAIR procedures performed in our tertiary referral center. We analyzed whether the outcome was influenced by time of infection after arthroplasty, previous surgery or causative pathogen. We retrospectively collected data of 81 patients treated with DAIR for periprosthetic joint infections after hip (n=48) and knee (n=33) arthroplasty between 2011 and 2017. Patients were divided into 3 groups: acute early infections (occurring <4 weeks, 29 cases), late chronic infections (occurring >4 weeks postoperative, 49 cases) and acute haematogenous infections (occuring >3 months after surgery with symptoms less than 4 weeks, 3 cases). Primary outcome was successful infection eradication after treatment within one year. Eradication failure was determined as unplanned subsequent surgery because of persistent infection, use of suppressive antibiotics or signs of infection at one year follow-up.Aim
Methods