In posterior fixation for deformity correction and spinal fusion, there is increasing discussion around auxiliary rods secured to the pedicle screws, sharing the loads, and reducing stresses in the primary rods. Dual-rod, multiaxial screws (DRMAS) provide two rod mounting points on a single screw shaft to allow unique constructs and load-sharing at specific vertebrae. These implants provide surgical flexibility to add auxiliary rods across a pedicle subtraction osteotomy (PSO) or over multiple vertebral levels where higher bending loads are anticipated in primary rods. Other options include fixed-angle devices as multiple rod connectors (MRC) and variable-angle dominoes (VAD) with a single-axis rotation in the connection. The objective in this simulation study was to assess rod bending in adult spinal instrumentation across an osteotomy using constructs with DRMAS, MRC, or VAD multi-rod connections. The study was performed using computer biomechanical models of two adult patients having undergone posterior instrumented spinal fusion for deformity. The models were patient-specific, incorporating the biomechanics of the spine, have been calibrated to assess deformity correction and intra- and postoperative loads across the instrumented spine. One traditional bilateral-rod construct was used as a control for six multi-rod configurations. Spinal fixation scenarios from T10 through S1 with the PSO at L4 were simulated on each patient-specific model. The multi-rod configurations were bilateral and unilateral DRMAS at L2 through S1 (B-DRMAS and U-DRMAS), bilateral DRMAS at L3 and L5 (Hybrid), bilateral MRC over L3-L5, bilateral and unilateral VAD over L3-L5 (B-VAD and U-VAD). Postoperative gravity plus 8-Nm flexion and extension loads were simulated and bending moments in the rods were computed and compared. In the simulated control for each case (#1 & #2), average rod bending moments (of the right and left rods) at the PSO level were 6.7Nm & 5.5Nm, respectively, in upright position, 8.8Nm & 7.3Nm in 8-Nm flexion, and 4.6Nm & 3.7Nm in 8-Nm extension. When the primary rods of the multi-rod constructs were normalized to this control, the bending moments in the primary rods of Case #1 & #2 were respectively 57% & 58% (B-DRMAS), 54% & 62% (B-VAD), 60% & 61% (MRC), 72% & 69% (Hybrid), 81% & 70% (U-DRMAS), and 81% & 73% (U-VAD). Overall, the reduction in primary rod bending moments ranged from 19–46% for standing loads. Under simulated 8-Nm functional moments, the primary rod moments were reduced by 18–46% in flexion and 17–48% in extension. More rods and stiffer connections produced the largest reductions for the primary rods, but auxiliary rods had bending moments that varied from 49% lower to 13% higher than the primary ones. Additional rods through DRMAS, MRC, and VAD connections noticeably reduced the bending loads in the primary rods compared with a standard bilateral-rod construct. Yet, bending loads in the auxiliary rods were higher or lower than those in the primary rods depending on the 3D spinal deformity and stiffness of the auxiliary rod connections. Additional studies and patient-specific analyses are needed to optimize instrumentation parameters that may improve load-sharing in these constructs.
Over 10% of total hip arthroplasty (THA) surgeries performed in England and Wales are revision procedures1. Malorientation of the acetabular component in THA may contribute to premature failure. Yet with increasingly younger populations receiving THA surgery (through higher incidences of obesity) and longer life expectancy in general, the lifetime of an implant needs to increase to avoid a rapid increase in revision surgery in the future. The Evaluation of X-ray, Acetabular Guides and Computerised Tomography in THA (EXACT) trial is assessing the pelvic tilt of a patient by capturing x-rays from the patient in sitting, standing and step-up positions. It uses this information, along with a CT scan image, to deliver a personalised dynamic simulation that outputs an optimised position for the hip replacement. A clinical trial is currently in place to investigate how the new procedure improves patient outcomes2. Our aim in this project was to assess whether accurate functional assessment of pelvic tilt could be further obtained using inertial measurement units (IMUs). This would provide a rapid, non-invasive triaging method such that only patients with high levels of tilt measured by the sensors would then receive the full assessment with x-rays. Recruited patients were fitted with a bespoke device consisting of a 3D-printed clamp which housed the IMU and fitted around the sacrum area. A wide elastic belt was fitted around the patient's waist to keep the device in place. Pelvic tilt is measured in a standing, flexed seated and step-up position while undergoing X-rays with the IMU capturing the data in parallel. Patients further completed another five repetitions of the movements with the IMU but without the x-ray to test repeatability of the measurements. Statistical analysis included measures of correlation between the X-ray and IMU measurements.Background
Methods
Mesenchymal stromal cells (MSCs) are an attractive choice for regenerative medicine. We previously showed that MSCs enhance wound healing in animals after radiotherapy. The effect of MSCs on tumor growth is not well understood. The potential use of MSCs to enhance wound healing after radiotherapy (RT) and resection of soft tissue sarcoma (STS) is dependent on a satisfactory safety profile to ensure that tumor proliferation does not occur and recurrence is not increased. Primary cell lines (human myxofibrosarcoma and undifferentiated sarcoma) derived from sarcoma bearing patients and a commercialized human fibrosarcoma cell line (HT1080) were used. Cell line proliferation assay after co-culture with MSCs was done using flow cytometry (CFSE) and bioluminescence emission (BLI) (using eGFP/Fluc transduced cell lines). Five xenograft models were developed with NOD/SCID gc-null mice (n=164) harbouring primary tissue lines obtained from patients biopsies (myxofibrosarcoma and three pleomorphic undifferentiated sarcoma [PUS A, B and C]) and a a fibrosarcoma cell line previously transduced with eGFP/Fluc. Tumors were passaged to three mouse generations before a tissue line was established and the model was then used. For the fibrosarcoma model, eGFP/Fluc HT1080 were injected under the dorsal skin. When tumors reached 1cm in diameter, they received localized RT and 48hr later were resected. MSCs (n=82) or medium alone (n=82) was injected subcutaneously adjacent to the wound after tumor resection. Histological and in vivo BLI analysis were performed 3 and 12 weeks after surgery.Purpose
Method