Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 55 - 55
4 Apr 2023
Ge Q Shi Z Ying J Chen J Yuan W Wang P Chen D Feng X Tong P Jin H
Full Access

TGF-β/Smad2 signaling is considered to be one of the important pathways involved in osteoarthritis (OA) and protein phosphatase magnesium-dependent 1A (PPM1A) functions as an exclusive phosphatase of Smad2 and regulates TGF-β signaling, here, we investigated the functional role of PPM1A in OA pathogenesis.

PPM1A expressions in both human OA cartilage and experimental OA mice chondrocytes were analyzed immunohistochemically. Besides, the mRNA and protein expression of PPM1A induced by IL-1β treatment were also detected by q-PCR and immunofluorescence in vitro. OA was induced in PPM1A knockout (KO) mice by destabilization of the medial meniscus (DMM), and histopathological examination was performed. OA was also induced in wild-type (WT) mice, which were then treated with an intra-articular injection of a selective PPM1A inhibitor for 8 weeks.

PPM1A protein expressions were increased in both human OA cartilage and experimental OA mice chondrocytes. We also found that treatment with IL-1β in mouse primary chondrocytes significantly increased both mRNA and protein expression of PPM1A in vitro. Importantly, our data showed that PPM1A deletion could substantially protect against surgically induced OA. Concretely, the average OARSI score and quantification of BV/TV of subchondral bone in KO mice were significantly lower than that in WT mice 8 weeks after DMM surgery. Besides, TUNEL staining revealed a significant decrease in apoptotic chondrocytes in PPM1A-KO mice with DMM operation. With OA induction, the rates of chondrocytes positive for Mmp-13 and Adamts-5 in KO mice were also significantly lower than those in WT mice. Moreover, compared with WT mice, the phosphorylation of Smad2 in chondrocytes was increased in KO mice underwent DMM surgery. However, articular-injection with SD-208, a selective inhibitor of TGF-β/Smad2 signaling could significantly abolish the chondroprotective phenotypes in PPM1A-KO mice. Additionally, both cartilage degeneration and subchondral bone subchondral bone sclerosis in DMM model were blunted following intra-articular injection with BC-21, a small-molecule inhibitor for PPM1A.

Our study demonstrated that PPM1A inhibition attenuates OA by regulating TGF-β/Smad2 signaling. Furthermore, PPM1A is a potential target for OA treatment and BC-21 may be employed as alternative therapeutic agents for the management of OA.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 426 - 438
20 Jul 2022
Luo P Wang P Xu J Hou W Xu P Xu K Liu L

Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps.

Cite this article: Bone Joint Res 2022;11(7):426–438.


Bone & Joint Research
Vol. 11, Issue 5 | Pages 292 - 300
13 May 2022
He C Chen C Jiang X Li H Zhu L Wang P Xiao T

Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment.

Cite this article: Bone Joint Res 2022;11(5):292–300.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 44 - 44
1 Apr 2018
Warnecke D Balko J Schild NB Wang P Bieger R Ignatius A Mizaikoff B Reichel H Dürselen L
Full Access

Introduction

With processing age, meniscus degeneration occurs which is often associated with osteoarthritis. Existing data about the influence of degeneration on the biomechanical properties of the meniscus are still contradictory, or completely unknown regarding the hydraulic permeability. Thus, the aim of this study was to characterise the biomechanical properties and structural composition of the meniscal tissue depending on its degree of degeneration.

Methods

Menisci of 24 TKR-patients (≈67.1 yrs.) were harvested and the degeneration of each region (pars anterior PA, pars intermedia PI, pars posterior PP) classified according to Pauli et al. For biomechanical characterisation, confined compression tests (20% strain; velocity: 3%h0/min, relaxation time: 1h) to determine equilibrium modulus (HA) and hydraulic permeability (k) and tensile tests (velocity: 5%l0/min) to determine the tensile modulus were performed. Therefore, cylindrical (Ø= 4.6mm, initial height h0≈ 2.3mm) and dumbbell-shaped (3.5mm × 1.4mm × 3.5mm) samples were punched out of each region and flattened to achieve parallel surfaces. Additionally, collagen and proteoglycan (PG) content were analysed by calculating the area-under-curve of their specific wavelength ranges (1293–1356cm−1 and 980–1120cm−1, respectively) using infrared (IR) spectroscopy. To identify differences regarding the meniscus regions or its degeneration, a statistically mixed model was used.


Bone & Joint Research
Vol. 6, Issue 4 | Pages 253 - 258
1 Apr 2017
Hsu C Lin C Jou I Wang P Lee J

Objectives

Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats.

Methods

Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot


Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_III | Pages 218 - 218
1 Nov 2002
Lin S Wang P Cheng S Kuo M Lo C Chin L
Full Access

Background: Reconstruction nail had developed since 1985. General indications reviewed from literatures are 1. Ipsilateral femoral neck-shaft fracture (nondisplaced), 2. Russell-Type IB subtrochanteric fracturtes (intact piriformis fossa, fractured less trochanter). Many authors did not recommend that application of reconstruction nail in displaced ipsilateral femoral neck-shaft fractures. The reason is that unpredictable femoral neck-shaft reduction and over-distraction of shaft fracture. We developed one new method for overcoming such technical puzzle to achieve one-step reduction for displaced ipsilateral femoral neck-shaft fractures.

Material: There are 24 consecutive cases were treated by reconstruction nail by the same operator in Chi-Mei Foundation Hospital from February, 1999 to June, 2000. Five of them were diagnosed as displaced ipsilateral femoral neck-shaft fractures and treating new surgical technique in reconstruction nailing. Initial radiographic assessment revealed displaced neck fracture can be classified as Garden III, the fracture morphology is vertical (Pauwell III). Average age of these five patients is 37.6 y/o. The sex distribution is M:F=3:2

Method: Provisional proximal fixation of femur is mandatory. First, we use two 5.0mm drillpit transfixed trochanter region after assure of femoral anteversion. Second, release of traction and distal locking for reduction and fixation of shaft fracture part. Third, remove application handle and use Internal rotation or other remote maneuver for restoration of neck-shaft angle. Finally, complete drilling through neck and sequent proximal cephalomedullary locking was performed by free-hand method.

Result: Initial reduction result was acceptable. There was no significant coxa-varus or coxa-brevis. Two of them had removed of implants and clinical result was satisfied. No avascular necrosis was noted in our following up.

Discussion: How to treat displaced ipsilateral femoral neck-shaft fractures in one-step was obstacle in our orthopedic practice. Abandonment of reconstruction nail just due to technique demanding purpose is very pity. We developed such technique to make patient with displaced ipsilateral femoral neck-shaft fractures treat by closed and one-step method and gained more satisfaction.