header advert
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 20 - 20
1 Dec 2017
Xu L Chen X Wang H Wang F Wang Q
Full Access

Over the past decades, computer-aided navigation system has experienced tremendous development for minimising the risks and improving the precision of the surgery. Nowadays, some commercially-available and self-developed surgical navigation systems have already been tested and proved successfully for clinical applications. However, all of these systems use computer screen to render the navigation information such as the real-time position and orientation of the surgical instrument, virtual path of preoperative surgical planning, so that the surgeons have to switch between the actual operation site and computer screen which is inconvenient and impact the continuity of surgery. In recent years, Augmented Reality (AR)- based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualisation of an extensive variety of information to the users.

Therefore, in this study, a pilot study of a surgical navigation system for orthopaedics based on optical see-through augmented reality (AR-SNS) is presented, which encompasses the preoperative surgical planning, calibration, registration, and intra-operative tracking. With the aid of AR-SNS, the surgeon wearing the optical see-through head-mounted display can obtain a fused image that the 3D virtual critical anatomical structures are aligned with the actual structures of patient in intra-operative real-world scenario, so that some disadvantages of the traditional surgical navigation are overcome (For example, surgeon is no longer obliged to switch between the real operation scenario and computer screen), and the safety, accuracy, and reliability of the surgery may be improved.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 77 - 77
1 Mar 2017
Wang H Foster J Franksen N Rolston L
Full Access

Background

More and more patients with end-stage knee OA are treated with total knee replacements (TKR). A modern TKR (Persona PS system, Zimmer Inc.) was designed with the hope to improve fit by providing additional sizing options on the femur and tibia. To date, there is very little information regarding the knee strength and knee mechanics during gait after the TKR. Furthermore, as a great percentage of knee OA patients have OA limited in one knee compartment and in the patellofemoral joint, a bi-compartmental knee replacement (BKR) (iDUO system, ConforMIS Inc.) was designed to treat OA at these affected areas. The BKR re-creates the individual's knee shape while correcting for any deformity. In addition, the BKR procedure results in less bone loss and retains the cruciate ligaments. To date, the influence of the BKR on knee strength and knee mechanics remains unknown. The purpose of the study was to evaluate knee strength and mechanics during level walking after the TKR and BKR surgeries.

Methods

Twelve healthy control participants (age=57±6 yr.; mass=82±11 kg; height=175±11 cm), eight patients (age=63±10 yr.; mass=87±20 kg; height=166±8 cm) with ten BKR systems (post-op time = 17±9 mo.), and nine patients (age=65±9 yr.; mass=90±35 kg; Height=169±12 cm) with twelve TKR systems (post-op time = 14±5 mo.) participated in the study. In a laboratory setting, maximal isometric knee strength was evaluated. Motion capture and 3D kinematic and kinetic analyses were conducted for level walking. One way ANOVA was used to determine differences among the BKR, TKR, and the healthy control knees.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 27 - 27
1 May 2016
Sheng P Li Z Luo G Wang H Chen W Zhang Y Yang X
Full Access

Objective

To investigate the biomechanical mechanism and report preliminary clinical efficacy of eccentric rotational acetabular osteotomy (ERAO) when conduct treatment for developmental dysplasia of the hip (DDH).

Methods

Biomechanical model of the hip joint was established on six female cadaveric hips embalmed by formalin and stimulate ERAO was then performed on the model. Vertical force was loaded on the cadaveric spine from 0 N to 500 N and strain value on femoral head was measured preoperatively and postoperatively when loading force on spine reached the point of 100, 200, 300, 400 and 500 N. Stress value were then calculated base on the measurements. Besides, we reported postoperative follow up cases which were underwent ERAO to treat DDH in our hospital from July 2007 to October 2014. A total of 25 patients (26 hips) were reported, including 6 males and 19 females. Age varies from 11 to 57 years old, and the average age was 31 years old. Postoperative hip function was evaluated by Harris hip score and anteroposterior X⁃ray of pelvic was taken preoperatively and postoperatively to measure the Acetabular⁃head index (AHI), CE angle and Sharp angle.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 4 - 4
1 Jan 2016
Yang X Chen W Yu S Zhang Y Luo G Wang H Sheng P
Full Access

Objective

To investigate the biomechanical basis and report preliminary clinical efficacy of eccentric rotational acetabular osteotomy (ERAO) when treating developmental dysplasia of the hip (DDH).

Methods

Biomechanical model of the hip joint was established on cadaveric hips. After performed ERAO on the biomechanical model, we explored the impact of this surgery on biomechanics of the hip joint. Meanwhile, we reported postoperative follow-up cases who underwent ERAO in our hospital between November 2007 to July 2012. A total of 14 patients (15 hips) were reported, including 4 males and 10 females, mean age was 30 years old. Harris hip score was defined as clinical evaluation standard and radiographic assessment was based on the measurement and further comparison of pre- and post-operative AHI (Acetabular-head index), CE angle (Center-edge angle) and Sharp angle.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 310 - 310
1 Dec 2013
Frostick S Roebuck M Davidson J Santini A Peter V Banks J Williams A Wang H Thachil J Jackson R
Full Access

Introduction:

Wear debris from articulating joint implants is inevitable. Small debris particles are phagocytosed by macrophages. Larger particles initiate the fusion of many macrophages into multi-nucleated giant cells for particle encasement. Macrophages are recruited into inflamed tissues from the circulating monocyte population. Approximately 10% of white blood cells are monocytes which after release from the bone marrow circulate for 2–3 days, before being recruited into tissues as inflammatory macrophages or undergoing apoptosis. Circulating MRP8/14 (S100A8/A9) is a measure of monocyte recruitment, part of the monocyte-endothelial docking complex, and shed during monocyte transmigration across the endothelium. The higher the S100A8/A9 the more monocytes being recruited giving an indirect measure of debris production.

Methods:

2114 blood samples were collected from arthroplasty patients with hip or knee osteoarthritis (primary, post-traumatic and secondary), 589 before their primary arthroplasty, 1187 patients > 1 year post-arthroplasty, 101 patients before revision for aseptic loosening and 237 patients >1 year post-revision. Plasma S100A8/A9 was measured using BMA Biomedicals Elisa kit, normal levels in health adults are 0.5–3 mg/ml. Joint specific scores, WOMAC knee or Oxford Hip adjusted to percent of maximum, together with SF-12 were completed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 311 - 311
1 Dec 2013
Frostick S Williams A Wang H Davidson J Santini A Thachil J Banks J Jackson R Roebuck M
Full Access

Introduction:

The risk factors for degenerative joint disease are well established: increasing age, obesity, joint abnormalities, trauma and overuse, together with female gender, ethnic and genetic factors. That obesity is a significant risk factor for developing osteoarthritis in non-weight-bearing as well as weight-bearing and joints was one of the first indications that the risk was nor purely that of aberrant biomechanical loading. Low grade chronic systemic inflammation is a component of each of ageing and obesity, atherosclerosis and diabetes, culminating in Metabolic Syndrome. In our study of 1684 patients with joint degeneration 85% were overweight or obese and 65% older than 65 years with 62% being both, 73% of patients were taking medications for serious, ‘non-orthopaedic’ health problems such as cardiovascular or respiratory disease, obesity or NIDDM. Monocytes are a major component of chronic inflammation, approximately 10% of white blood cells are monocytes which circulate for 2–3 days, before being recruited into tissues as inflammatory macrophages or undergoing apoptosis. Circulating S100A8/A9 (MRP8/14) is a measure of monocyte recruitment being shed during monocyte transmigration across the endothelium. The higher the S100A8/A9 the more monocytes being recruited giving an indirect measure of chronic inflammatory status.

Methods:

2154 blood samples were collected from arthroplasty patients (first or second joint replacement), 1135 Female and 1019 Male, age 29–93 years, body mass index (BMI) 18–56, with hip or knee osteoarthritis (primary, post-traumatic and secondary), 589 before a primary arthroplasty, 1187 patients >1 year post-arthroplasty, 101 patients before revision for aseptic loosening and 237 patients >1 year post-revision. All study patients received metal on UHMWPE implants. Plasma S100A8/A9 was measured using BMA Biomedicals Elisa kit, normal levels in healthy adults are 0.5–3 mg/ml. The data were analysed using SPSS, p values were calculated using Spearman's test.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 5 - 5
1 Sep 2012
Carli A Gao C Khayyat-Kholghi M Wang H Li A Ladel C Harvey EJ Henderson J
Full Access

Purpose

Internal fixation of fractures in the presence of osteopenia has been associated with a failure rate as high as 25%. Enhancing bone formation and osseointegration of orthopaedic hardware is a priority when treating patients with impaired bone regenerative capacity. Fibroblast Growth Factor (FGF) 18 regulates skeletal development and could therefore have applications in implant integration. This study was designed to determine if FGF 18 promotes bone formation and osseointegration in the osteopenic FGFR3−/− mouse and to examine its effect on bone marrow derived mesenchymal stem cells (MSCs).

Method

In Vivo: Intramedullary implants were fabricated from 0.4 × 10mm nylon rods coated with 300nm of titanium by physical vapour deposition. Skeletally mature, age matched female FGFR3−/− and wild type mice received bilateral intramedullary femoral implants. Left femurs received an intramedullary injection of 0.1μg of FGF 18 (Merck Serono), and right femurs received saline only. Six weeks later, femurs were harvested, radiographed, scanned by micro CT, and processed for undecalcified for histology. In Vitro: MSCs were harvested from femurs and tibiae of skeletally mature age matched FGFR3−/− and wild type mice. Cells were cultured in Alpha Modified Eagles Medium (αMEM) to monitor proliferation or αMEM supplemented with ascorbic acid and sodium beta-glycerophosphate to monitor differentiation. Proliferation was assessed through cell counts and metabolic activity at days 3, 6 and 9. Differentiation was assessed through staining for osteoblasts and mineral deposition at days 6, 9 and 12.