header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 75 - 75
1 Jan 2018
Shimmin A Bare J McMahaon S Marel E Walter L Solomon M
Full Access

The pelvis moves in the sagittal plane during functional activity. This can be detrimental to functional cup orientation. Increased pelvic mobility could be a risk factor for instability and edge-loading, in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness, affects the number of patients at risk of excessive sagittal pelvic mobility.

Pre-operatively, 3428 patients had their pelvic tilt and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender, and lumbar flexion. The percentage of patients in each group with “at risk” pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.

There was an increased incidence of “at risk” pelvic mobility with increasing age, and decreasing lumbar flexion. This was more pronounced in females. Notably, 31% of elderly females had “at risk” pelvic mobility. Furthermore, 38% of patients with lumbar flexion <20° had “at risk” pelvic mobility.

“At risk” pelvic mobility was more common in older patients and in patients with limited lumbar flexion. Additional stability, such as a dual mobility articulation, might be advisable in patient cohort. However, the majority of patients exhibiting “at risk” pelvic mobility were not older than 75, and did not have lumbar flexion <20°. This supports analysis of pelvic mobility on all patients undergoing THR.