header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 211 - 211
1 Sep 2012
Waanders D Janssen D Mann K Verdonschot N
Full Access

In cemented total hip arthroplasty, the cement-bone interface can be considerably degraded in less than one year in-vivo service (Figure 1). This makes the interface much weaker relative to the direct post-operative situation. Retrieval studies show that patients do, to a certain extent, not suffer from the degraded cement-bone interface itself. It is, however, unknown whether the degraded cement-bone interface affects other failure mechanisms in the cemented hip reconstruction. A good understanding of the mechanics of the cement-bone interface is therefore essential. The aim of this study was to investigate the mechanics of the cement-bone interface in the direct post-operative and degraded situation by the utilization of finite element analysis (FEA) and laboratory experiments. It was subsequently analyzed how the mechanics of the cement-bone interface affect failure of the cement mantle in terms of crack formation.

In order to investigate the mechanical response of the cement-bone interface, laboratory prepared (direct post-operative state) and postmortem (degraded state) specimens were loaded in various directions in the laboratory and FEA environment. From all specimens, multiple interface morphology parameters were documented, which were related to the interfacial response and subsequently converted to a numerical cohesive model. As a validation, this cohesive model was implemented into two FEA models of transverse sections of cemented hip reconstructions with distinct mechanical characteristics (Figure 2). Finally, the differences in fatigue crack formation in a complete hip reconstruction were determined by varying the cement-bone interface compliance (Figure 3).

When loaded in multiple directions, the interface compliance could not be related to the cement interdigitation depth (r2=0.08). However, compliance did correlate to the gap thickness between the bone and cement (r2=0.81) and the amount of interfacial contact (r2=0.50). Surprisingly, for the same amount of contact, the interface was more compliant in degraded state than in the direct post-operative state. The mechanical response of the experimental and FEA cement-bone interface tests could, independent on the direct post-operative or degraded state, successfully be described by a cohesive model. The cohesive model was even more confirmed by the successful reproduction of the mechanics of the retrieved transverse sections. When the cohesive model was implemented in a complete reconstruction, we found that a compliant cement-bone interface resulted in considerably more fatigue cracks in the cement mantle than a very stiff interface.

This study showed that an increased compliancy of the cement-bone interface results in an increase of cement cracks in the cement mantle. It is therefore crucial to minimize the interfacial gaps and, as a result, increase the amount of contact between the bone and cement to generate a stiff cement-bone interface. It is, unfortunately, unknown how this well fixed interface can be maintained. We finally conclude that the derived cohesive model of the cement-bone interface can be used for multiple applications in orthopaedics, including pre-clinical of implants and patient specific studies of failed cemented reconstructions.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 425 - 426
1 Nov 2011
Janssen D Waanders D Mann K Verdonschot N
Full Access

The stability of cemented hip implants relies on the fixation of the cement mantle within the bone cavity. This fixation has been investigated in experiments with cement-bone interface specimens, which have shown that the cement-bone interface is much more compliant than is commonly assumed. Other studies demonstrated that the mechanical response of the interface is dependent on penetration of the cement into the bone. It is, however, unclear how cement penetration exactly affects the stiffness and strength of the cement-bone interface. We therefore used finite element (FE) models of cement-bone specimens to study the effect of cement penetration depth on the micromechanical behavior of the interface.

The FE models were created based on micro computed tomography (micro CT) data of two small cement-bone interface specimens (8x8x4 mm). The specimens had distinct differences with respect to interface morphology. In these models we varied the penetration depth, with six different penetration levels for each model. We then incrementally deformed each model in tension and in shear, until failure of the models. Failure was simulated to occur in the bone and cement when the local ultimate tensile stress was exceeded, by locally reducing the material stiffness to near zero. From the resulting force-displacement curves we established the apparent tensile stiffness and strength for each of the models.

Our results indicated that the strength and stiffness of the cement-bone interface increased with increasing cement penetration depth, both in tension and in shear. However, after reaching a certain penetration depth, both strength and stiffness did not further increase. This depth was dependent on the specific interface morphology. We furthermore found that the strength of the models was higher in shear than in tension. After failure of the models, damage was mainly found in the cement, rather than in the bone.

The FE-based techniques developed for the current study are suitable for exploration of a variety of aspects that may affect the cement-bone interface micromechanics, such as biological changes to the bone and variations of cement material properties.