header advert
Results 1 - 7 of 7
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 127 - 127
2 Jan 2024
Strangmark E Wang J Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay. Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers. We find that the 3D environment of the chondrocyte has a profound effect on the behavior and fate of the cell; in TCP monolayer cultures, chondrocytes become anti-apoptotic and undergo senescence in response to inflammatory cytokines, whereas in 3D cell pellet cultures, they exhibit a pro-apoptotic response. Our findings demonstrate that chondrocyte culture environment plays a pivotal role in cell behavior, which has important implications for the clinical applicability of in vitro research of cartilage repair. Although there are practical advantages to 2D cell cultures, our data suggest researchers should be cautious when drawing conclusions if they intend to extrapolate findings to in vivo phenomena. Our data demonstrates opposing chondrocyte responses in relation to apoptosis and senescence, which appear to be solely reliant on the environment of the culture system. This biological observation highlights that proper experimental design is crucial to increase the clinical utility of cartilage repair experiments and streamline their translation to therapy development.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 57 - 57
17 Nov 2023
Strangmark E Wang JH Hosni RA Muhammad H Alkhrayef M Robertson-Waters E MacMillan A Gompels B Vogt A Khan W Birch M McCaskie A
Full Access

Abstract

BACKGROUND

Cell culture on tissue culture plastic (TCP) is widely used across biomedical research to understand the in vivo environment of a targeted biological system. However, growing evidence indicates that the characteristics of cells investigated in this way differ substantially from their characteristics in the human body. The limitations of TCP monolayer cell cultures are especially relevant for chondrocytes, the cell population responsible for producing cartilage matrix, because their zonal organization in hyaline cartilage is not preserved in a flattened monolayer assay.

OBJECTIVE

Here, we contrast the response of primary human chondrocytes to inflammatory cytokines, tumor necrosis factor-alpha and interferon-gamma, via transcriptional, translational, and histological profiling, when grown either on TCP or within a 3D cell pellet (scaffold-less). We focus on anti-apoptotic (Bcl2), pro-apoptotic (Bax, Mff, Fis1), and senescent (MMP13, MMP1, PCNA, p16, p21) markers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 51 - 51
17 Nov 2023
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract

Objectives

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age and gender is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age and gender on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties.

Methods and Results

We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age and gender on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory-based experiments to assess these properties. Compare the extent of the effect of age on MSC cell marker expression, proliferation and pathways. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the synovium, fat pad and bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for antibody cocktail (eg included CD34, CD45). The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. At P2 after extracting RNA, we investigate the gene analysis using Bulk seq. Clear differences between the younger and older patients and gender were indicated.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 77 - 77
17 Apr 2023
Vogt A Darlington I Birch M Brookes R McCaskie A Khan W
Full Access

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties.

We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the bone fragments using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Clear differences between the younger and older patients were indicated.

Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 111 - 111
11 Apr 2023
Kapetanos K Asimakopoulos D Christodoulou N Vogt A Khan W
Full Access

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population.

In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses.

These studies showed an increase in the expression of p21, p53, p16, ROS, and NF- B with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/ -catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA- -galactosidase, a specific marker of cellular senescence.

Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract

Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 14 - 14
1 Dec 2021
Darlington I Vogt A Williams EC Brooks R Birch M Mohorianu I Khan W McCaskie A
Full Access

Abstract

Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based regenerative therapies using mesenchymal stromal cells (MSCs). MSCs are however present in a number of tissues and studies suggest that they vary in their proliferation, cell surface characterisation and differentiation. As the phenotypic properties of MSCs vary depending on tissue source, a systematic comparison of the transcriptomic signature would allow a better understanding of these differences between tissues, and allow the identification of markers specific to a MSC source that is best suited for clinical application. Tissue was used from patients undergoing total knee replacement surgery for osteoarthritis following ethical approval and informed consent. MSCs were isolated from bone, cartilage, synovium and infrapatellar fat pad. MSC number and expansion were quantified. Following expansion in culture, MSCs were characterised using flow cytometry with several cell surface markers; the cells from all sources were positive for CD44, CD90 and CD105. Their differentiation potential was assessed through tri-lineage differentiation assays. In addition, bulk mRNA-sequencing was used to determine the transcriptomic signatures. Differentially expressed (DE) genes were predicted. An enrichment analysis focused on the DE genes, against GO and pathway databases (KEGG and Reactome) was performed; protein-protein interaction networks were also inferred (Metascape, Reactome, Cytoscape). Optimal sourcing of MSCs will amplify their cartilage regeneration potential. This is imperative for assessing future therapeutic transplantation to maximise the chance of successful cartilage repair. A better understanding of differences in MSCs from various sources has implications beyond cartilage repair.