Prosthetic joint infections (PJI) remain a great challenge in orthopedic surgery with a high mortality rate. It is particularly complicated by biofilms and infections caused by Methicillin-resistant We induced specific monoclonal antibodies 4497-IgG1 as carriers, which target wall teichoic acids (WTA) existing on MRSA and its biofilm. Radionuclides actiniumr-225 (225Ac, α-emitter) and lutetium-177 (177Lu, β-emitter) were conjugated with mAbs using DOTA as chelator. Quality control was assessed using thin layer chromatography and immunoreactivity assays. 225Ac- and 177Lu-labelled 4497-IgG1 were employed to evaluate the susceptibility of MRSA and its biofilm to the radioimmunotherapy in vitro. Planktonic MRSA and biofilms, at concentrations of 108 and 107 CFU/mL, were incubated at 37°C for 60 minutes in PBS containing either 225Ac-mAb (0 - 14.8 kBq) or 177Lu-mAb (0 - 14.8 MBq). Radiolabelled dunituximab and free radionuclides serve as isotype-matched negative control. The bacterial viability and metabolic activity were subsequently quantified using CFU and XTT assays.Aim
Method
“Implant associated “We produced a set of 20 recombinant mAbs specific for staphylococcal antigens. Using flow cytometry and ELISA-based methods we determined the binding of these mAbs to planktonic staphylococci and Aim
Method