Robot systems have been successfully introduced to improve the accuracy and reduce severe iatrogenic soft tissue damage in knee arthroplasty. Unfortunately to perform complete a complete bone cut, the cutting tool has to slightly pass the edge of the bone. In the posterior zones were retractor protection is impossible this will lead to contact between the cutting tool and the soft tissue envelope. Therefore, complete soft tissue preservation cannot be guaranteed with the current commercial systems. This study presents an alternative robotic controlled cutting technique to perform the bone resections during TKA by milling a slot with a long slender high-speed milling tool. The system is composed by a long milling tool driven by a high-speed motor and a protector covering the end of the cutter. The protector is rigidly connected to the motor by the support structure next to the mill, which moves behind the mill in the slot created by the cutter. The protector at the end of the cutter has four functions: providing mechanical support for the mill, preventing soft tissue to come into contact with the cutter, sensing the edge of the bone to accurately follow the shape of the bone and releasing the attached soft tissue. The edge of the bone is sensed by force feedback and with the help of a probing motion the adaptive algorithm enables the protector to follow the edge of the bone closely by compensating for small segmentation and registration errors. A pilot test to evaluate the concept was performed on three fresh frozen knees. The flatness of the resection, the iatrogenic soft tissue damage, the cutting time and the efficiency of the bone contour following algorithm was measured.Introduction
Methods
Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods