Aim of the study was to evaluate if abrasion-arthroplasty (AAP) and abrasion-chondroplasty (ACP) leads to a release of mesenchymal stem cell (MSC) like cells from the bone marrow to the joint cavity where they probably differentiate into a chondrogenic phenotype. Cartilage demage is a sever problem in our aging society. About 5 million people only in Germany are affected. Osteoathritis is a degeneration of cartilage caused by aging or traumata 50 % of the people over 40 have signs of osteoarthritis. But the ability of self-regeneration of cartilage is strongly limited. There are different approaches to therapy osteoathritic lesions. Arthroscopic treatment of OA includes bone marrow stimulation technique such as abrasion arthroplasty (AAP) and microfracturing (MF). Beside the support of chondrocyte progenitor cells the environment is also important for the commitment to chondrocytes. Therefore insulin-like growth factor-1 (IGF-1) and transforming growth factor beta-1 (TGF-β1) are important factors during the regeneration process. In the present study we characterised the heamarthrosis and the released cells after AAP and its ability to differentiate into the chondrocyte lineage. Postoperative haemarthrosis was taken 5, 22 or 44 hours after surgery. 7.5 mg Dexamethasone (Corticosteroid) was administered into the knee joint to prevent postoperative inflammation. Mononuclear cells were isolated from haemarthrosis from the drainage bottle by ficoll density gradient centrifugation. The isolated cells were characterised using fluorescence-activated cell-sorting (FACS) analysis for characteristic markers of MSC such as CD 44, 73, 90, 105. After expanding cells were cultured in a pellet culture. After 3 weeks, histochemistry and immunohistochemistry against Sox9, collagen II and proteoglycan were performed. The release of IGF1, BMP4 and BMP7 was analysed in haemarthrosis serum by ELISA and Luminex technology.Introduction
Material and Methods
Immunosuppressive drugs such as glucocorticoids or methotrexate may increase the susceptibility to bone infection by decreasing AP-expression levels in case of microbial challenge. Novel approaches to management are required particularly in the era of multi-resistant bacterial strains. Current investigation will focus on the regulation of human β-Defensins in bone and may allow artificial amplification for prevention of bacterial bone infection in the future.