For many designs of total knee arthroplasty (TKA) it remains unclear whether cemented or uncemented fixation provides optimal long-term survival. The main limitation in most studies is a retrospective or non-comparative study design. The same is true for comparative trials looking only at the survival rate as extensive sample sizes are needed to detect true differences in fixation and durability. Studies using radiostereometric analysis (RSA) techniques have shown to be highly predictive in detecting late occurring aseptic loosening at an early stage. To investigate the difference in predicted long-term survival between cemented, uncemented, and hybrid fixation of TKA, we performed a randomized controlled trial using RSA. A total of 105 patients were randomized into three groups (cemented, uncemented, and hybrid fixation of the ACS Mobile Bearing (ACS MB) knee system, implantcast). RSA examinations were performed on the first day after surgery and at scheduled follow-up visits at three months, six months, one year, and two years postoperatively. Patient-reported outcome measures (PROMs) were obtained preoperatively and after two years follow-up. Patients and follow-up investigators were blinded for the result of randomization.Aims
Methods
Traditional TKR designs exhibit abnormal and unpredictable kinematics: with posterior subluxation in extension and anterior slide with flexion. These can contribute to restricted knee flexion and reduced quadriceps efficiency. Newer designs attempt to provide “guided motion” with the aim of mimicking normal knee kinematics. The Journey (Smith & Nephew) BCS TKR incorporates both an anterior and a posterior cam/post mechanism while Triathlon PS TKR (Stryker) incorporates a posterior cam/post mechanism. This study compares the in-vivo kinematics of these two designs and compares it with normal knee. Knee kinematics of 10 patients with Journey-BCS TKR and 11 patients with Triathlon PS TKR; all with excellent clinical outcome (average age: 65) were analysed. Patients underwent fluoroscopic assessment of the knee during a step-up and deep knee bend exercise. 2D fluoroscopic images were recorded. Data was analysed for patella tendon angle (PTA) and contact points using a 3D model fitting technique. This data was compared to normal knee kinematics (n=20).Introduction
Methods