Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 63 - 63
1 Nov 2018
Utzschneider S
Full Access

Improvements in arthroplasty design and materials led to superior lifetime of the implants. Nevertheless, aseptic loosening due to particulate debris is still one of the most frequent late reasons for revision of hip and knee replacements. The complex process of inflammation and osteolysis due to wear particles is not understood in detail so far. A cellular and receptor mediated response to wear particles results in a release of pro-inflammatory cytokines and induces an inflammatory reaction causing periprosthetic osteolysis. The overall cellular response is influenced by particle volume as well as characteristics. But there is still a lack of data concerning all signalling pathways that are involved. To answer some open questions appropriate in vivo models are shown closing the loop between wear simulation, particle analysis, generation of sterile particles and biological evaluation. Beyond that, new aspects of particle effects and deposits in retrieved human tissue are given.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 83 - 83
1 Nov 2018
Paulus AC Ebinger K Haßelt S Kretzer JP Bader R Utzschneider S
Full Access

The biological reaction in metallosis and pseudotumor generation after metal on metal total hip arthroplasty or corroding metal implants remains unsettled. Clinically, still lethal cases appear with massive bone loss and metal ions are suspected to be responsible for this inflammatory reaction, solid metal wear particles instead are usually not observed in the common literature. The aim of this study was to compare the biological reactions of metal ions and metal wear particles in a murine in vivo model. Metal ions (CoCr), metal particles (CoCr), polyethylene particles (UHMWPE) and phosphate buffered saline (PBS) were injected into the left knee joint of female BALB/c mice. 7 days after injection, the microcirculation was observed using intravital fluorescence microscopy, followed by euthanasia of the animals. After the assessment of the knee diameter, the knees underwent histological evaluations of the synovial layer. Throughout all recorded data, CoCr particles caused higher inflammatory reactions compared to metal ions and UHMWPE particles. The mice treated with the solid particles showed enlarged knee diameters, more intensive leukocyte–endothelial cell interactions and an elevated functional capillary density. Pseudotumor-like tissue formations in the synovial layer of the mice were only seen after the exposition to solid CoCr particles. Even if the focus of several national guidelines concerning metallosis and pseudotumor generation is on metal ions, the present data reveal that solid CoCr particles have the strongest inflammatory activity compared with metal ions and UHMWPE particles in vivo.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 58 - 58
1 Jan 2017
Grupp T Schierjott R Pfaff A Tozzi G Schwiesau J Giurea A Utzschneider S
Full Access

Knee arthroplasty with a rotating hinge knee (RHK) prosthesis has become an important clinical treatment option for knee revisions and primary patients with severe varus or valgus deformities and instable ligaments. The rotational axle constraints the anterior-posterior shear and varus-valgus moments, but currently used polyethylene bushings may fail in the mid-term due to insufficient creep and wear resistance of the material. Due to that carbon-fibre-reinforced (CFR) PEEK as an alternativ bushing material with enhanced creep, wear and fatigue behaviour has been introduced in a RHK design [Grupp 2011, Giurea 2014]. The objective of our study was to compare results from the pre-clinical biotribological characterisation to ex vivo findings on a series of retrieved implants.

In vitro wear simulation according to ISO 14243-1 was performed on rotating hinge knee devices (EnduRo® Aesculap, Germany) made out of cobalt-chromium and of a ZrN multi-layer ceramic coating for 5 million cycles. The mobile gliding surfaces were made out of polyethylene (GUR 1020, β-irradiated 30 ± 2 kGy). For the bushings of the rotational and flexion axles and the flanges a new bearing material based on CFR-PEEK with 30% PAN fiber content was used.

Analysis of 12 retrieved EnduRo® RHK systems in cobalt-chromium and ZrN multi-layer in regard to

loosening torques in comparison with initial fastening torques

Optical, DSLR camera and stereo light microscope analysis

distinction between different wear modes and classification with a modified HOOD-score

SEM & EDX of representative samples

surface roughness and depth profilometry

with a focus on the four CFR-PEEK components integrated in the EnduRo® RHK design.

For the rotating hinge knee design with flexion bushing and flanges out of CFR-PEEK the volumetric wear rates were 2.3 ± 0.48 mm3/million cycles (cobalt-chromium) and 0.21 ± 0.02 mm3/million cycles (ZrN multi-layer), a 10.9-fold reduction (p = 0.0016). The UHMWPE and CFR-PEEK particles were comparable in size and morphology and predominantly in submicron size [5]. The biological response to representative sub-micron sized CFR-PEEK particles has been demonstrated in vivo based on the leucoyte-endothelian-cell interactions in the synovia of a murine intra-articular knee model by Utzschneider 2010. Schwiesau 2013 extracted the frequency of daily activities in hip and knee replacement patients from literature and estimated an average of 1.76 million gait cycles per year. Thus, the 5 million cycles of in vitro wear testing reflect a mean in vivo service life of 2.9 years, which fits to the time in vivo of 12–60 months of the retrieved RHK devices. The in vitro surface articulation pattern of the wear simulation tests are comparable to findings on retrieved CFR-PEEK components for both types of articulations – cobalt-chromium and ZrN multi-layer coating.

For the rotating hinge knee design the findings on retrieved implants demonstrate the high suitability of CFR-PEEK as a biomaterial for highly loaded bearings, such as RHK bushings and flanges in articulation to cobalt-chromium and to a ZrN multi-layer coating.