Control of stem cell fate and function is critical for clinical and academic work. By combining surface chemistry-driven extracellular matrix (ECM) assembly with mesenchymal stem cells (MSCs) we are developing a system which can be used to regulate the behaviour of MSCs. The conformation of the ECM glycoprotein fibronectin (Fn) is different when adsorbed onto poly methylacrylate (PMA) where it is globular, and on poly ethylacrylate (PEA) where it forms a physiologically-similar network[1] (Fig. 1). Using these polymers to govern Fn conformation, we are developing a 3D system incorporating MSC-responsive growth factors (GFs) and bone marrow MSCs capable of regulating MSC behaviour. Toluene-dissolved PMA and PEA were spin coated onto glass coverslips before solvent extraction To establish the best combination of polymer/FN/GF, MSC stemness markers (ALCAM, NESTIN and STRO1), osteogenic differentiation markers (OCN and OPN) and bone marrow markers (SCF and VCAM1) were measured in MSCs cultured for 3-weeks on substrates. OCN, SCF, and VCAM1 expression was enhanced across all combinations compared to glass control, while for ALCAM/STRO1/NESTIN and OPN, PEA combinations enhanced their expression. PEA + FN + VEGF appeared to be system best suited to maintaining MSC stemness and supporting expression of osteogenesis markers and bone marrow markers. We have shown that MSCs maintain their stem cells state and express high levels of SCF and VCAM-1 when cultured on PEA with adsorbed Fn and VEGF or BMP2. Next stages of this work will use PCR to verify results and analyse expression of other MSC markers to develop a role for these synthetic polymers as biomaterials.