The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.Aims
Methods
There is renewed interest in bi-unicondylar arthroplasty (Bi-UKA) for patients with medial and lateral tibiofemoral osteoarthritis, but a spared patellofemoral compartment and functional cruciate ligaments. The bone island between the two tibial components may be at risk of tibial eminence avulsion fracture, compromising function. This finite element analysis compared intraoperative tibial strains for Bi-UKA to isolated medial unicompartmental arthroplasty (UKA-M) to assess the risk of avulsion. A validated model of a large, high bone-quality tibia was prepared for both UKA-M and Bi-UKA. Load totalling 450N was distributed between the two ACL bundles, implant components and collateral ligaments based on experimental and intraoperative measurements with the knee extended and appropriately sized bearings used. 95th percentile maximum principal elastic strain was predicted in the proximal tibia. The effect of overcuts/positioning for the medial implant were studied; the magnitude of these variations was double the standard deviation associated with conventional technique.Abstract
Objectives
Methods
Laboratory experiments and computational models were used to predict bone-implant micromotion and bone strains induced by the cemented and cementless Biomet Oxford medial Unicompartmental Knee Replacement (UKR) tibial implants. Ten fresh frozen cadaveric knees were implanted with cementless medial mobile UKRs, the tibias were separated and all the soft tissues were resected. Five strain gauge rosettes were attached to each tibia. Four Linear Transducers were used to measure the superior-inferior and transverse bone-implant micromotions. The cementless UKRs were assessed with 10 cycles of 1kN compressive load at 4 different bearing positions. The bone-constructs were re-assessed following cementation of the equivalent UKR. The cemented bone-implant constructs were also assessed for strain and micromotion under 10000 cycles of 10mm anterior-posterior bearing movement at 2Hz and 1kN load. The cadaveric specimens were scanned using Computed Tomography, and 3D computer models were developed using Finite Element method to predict strain and micromotion under various daily loads. Results verify computer model predictions and show bone strain pattern differences, with cemented implants distributing the loads more evenly through the bone than cementless implants. Although cementless implants showed micromotions which were greater than computer predictions, the micromotions were as expected significantly greater than those of cemented implants. The computer models reveal that bone strains approach 70% of their failure limit at the posterior and anterior corners adjoining the sagittal and transverse cuts (less pronounced in cemented implants). The base of the keel also develops high strains which can approach failure depending on the amount the implant press-fit. The contributions of the anterior cruciate and patellar tendon forces exacerbate the strains in these regions. This may explain why fractures emanate from the base of the keel and the sagittal cut.Methods
Results and Discussion