Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 35 - 35
1 Dec 2021
Wang K Kenanidis E Miodownik M Tsiridis E Moazen M
Full Access

Abstract

Objectives

Stem malalignment in total hip arthroplasty (THA) has been associated with poor long-term outcomes and increased complications (e.g. periprosthetic femoral fractures). Our understanding of the biomechanical impact of stem alignment in cemented and uncemented THA is still limited. This study aimed to investigate the effect of stem fixation method, stem positioning, and compromised bone stock in THA.

Methods

Validated FE models of cemented (C-stem – stainless steel) and uncemented (Corail – titanium) THA were developed to match corresponding experimental model datasets; concordance correlation agreement of 0.78 & 0.88 for cemented & uncemented respectively. Comparison of the aforementioned stems was carried out reflecting decisions made in the current clinical practice. FE models of the implant positioned in varus, valgus, and neutral alignment were then developed and altered to represent five different bone defects according to the Paprosky classification (Type I – Type IIIb). Strain was measured on the femur at 0mm (B1), 40mm (B2), and 80mm (B3) from the lesser trochanter.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 46 - 46
1 Aug 2012
Taylor S Tsiridis E Ingham E Jin Z Fisher J Williams S
Full Access

Tribology and wear of articular cartilage is associated with the mechanical properties, which are governed by the extracellular matrix (ECM). The ECM adapts to resist the loads and motions applied to the tissue. Most investigations take cartilage samples from quadrupeds, where the loading and motions are different to human. However, very few studies have investigated the differences between human and animal femoral head geometry and the mechanical properties of cartilage.

This study assessed the differences between human, porcine, ovine and bovine cartilage from the femoral head; in terms of anatomical geometry, thickness, equilibrium elastic modulus and permeability.

Diameter of porcine (3-6 months old), bovine (18-24 months old), ovine (4 years old) and human femoral heads were measured (n=6). Plugs taken out of the superior region of each femoral head and creep indentation was performed. The human femoral heads were obtained from surgery due to femoral neck fracture. Cartilage thickness was measured by monitoring the resistive force change as a needle traversed the cartilage and bone at a constant feed rate using a mechanical testing machine. The percentage deformation over time was determined by dividing deformation by thickness. A biphasic finite element model was used to obtain the intrinsic material properties of each plug. Data is presented as the mean ± 95% confidence limits. One-way ANOVA was used to test for significant differences (p < or = 0.05).

Significant differences in average femoral head diameter were observed between all animals, where bovine showed the largest femoral head. Human cartilage was found to be significantly thicker than cartilage from all quadrupedal hips. Human cartilage had a significantly larger equilibrium elastic modulus compared to porcine and bovine cartilage. Porcine articular cartilage was measured to be the most permeable which was significantly larger than all the other species. No significant difference in permeability was observed between human and the other two animals: bovine and ovine (Table 1).

The current study has shown that articular cartilage mechanical properties, thickness and geometry of the femoral heads differ significantly between different species. Therefore, it is necessary to consider these variations when choosing animal tissue to represent human.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 29 - 29
1 May 2012
Zou H Brookes S Lyngstadaas S Boccaccini A Tsiridis E Seedhom B Yang X
Full Access

Objective

Human bone marrow stromal cells (HBMSCs) are multipotent and can form bone, cartilage or other tissues under different inductive conditions. The aim of this study was to investigate the effects of enamel matrix derivative (EMD) on the growth and osteogenic differentiation of HBMSCs.

Methods

HBMSCs were cultured in monolayer with EMD (1, 10, 50,100, 250μg/ml) in aMEM supplemented with 2% FBS for 3 days. Cells cultured in aMEM supplemented with 2% FBS (basal medium) served as the control group. Double-stranded DNA was quantified by PicoGreen assay. Quantitative RT-PCR was performed to determine the expression levels of RUNX2, osteopontin (OPN) and osteocalcin (OCN), dentin matrix protein1 (DMP1) and dentin sialophosphoprotein (DSPP) at different time points (day 0, 5 and 10) when exposed to 10μg/ml EMD or basal medium. Alkaline phosphatase specific activity (ALPSA) was determined after 5 and 10 days culture. Mineral deposition (as calcium) was visualised using Alizarin Red staining.