Using a methicillin-sensitive Abstract
OBJECTIVES
METHODS
Staphylococcus aureus is responsible for 60–70% infections of surgical implants and prostheses in Orthopaedic surgery, costing the NHS £120–200 million per annum. Its ability to develop tolerance to a diverse range of antimicrobial compounds, threatens to halt routine elective implant surgery. One strategy to overcome this problem is to look beyond traditional antimicrobial drug therapies and investigate other treatment modalities. Biophysical modalities, such as ultrasound, are poorly explores, but preliminary work has shown potential benefit, especially when combined with existing antibiotics. Using a methicillin-sensitive S. aureus reference strain and the dissolvable bead assay, bacterial biofilms were challenged by gentamicin +/− low-intensity ultrasound (1.5MHz, 30W/cm2, pulse duration 200µs/1KHz) for 20 minutes. The outcome measures were colony-forming units/mL (CFU/mL) and the minimum biofilm eradication concentration (MBEC) of gentamicin. The mean number of S. aureus within control biofilms was 1.04 × 109 CFU/mL. There was no clinically or statistically significant (p=0.531) reduction in viable S. aureus following ultrasound therapy alone. The MBEC of gentamicin for this S. aureus strain was 256 mg/L. The MBEC of gentamicin with the addition of ultrasound was 64mg/L. Low intensity pulsed ultrasound was associated with a four-fold reduction in the effective biofilm eradication concentration of gentamicin; bringing the MBEC of gentamicin to within clinically achievable concentrations
Carriers of Pre-operative PCR nasal screening was performed in 273 Orthopaedic patients awaiting joint replacement surgery. In all 100 patients were positive for Introduction
Methods