Locking plates can provide greater stability than conventional plates; however, reports revealed that fractures had a high incidence of failure without medial column support; the mechanical support of medial column could play a significant role in humeral fractures. Recent studies have demonstrated the importance of intramedullary strut in proximal humeral fracture fixation, the relationship to mechanical stability and supporting position of the strut remain unclear. The purpose of this study was to evaluate the influence of position of the intramedullary strut on the stability of proximal humeral fractures using a locking plate. Ten humeral sawbone (Synbone) and locked plates (Synthes, cloverleaf plate), with and without augmented intramedullary strut (five in each group) for proximal humerus fractures, were tested using material testing machine to validate the finite element model. A 10 mm osteotomy was performed at surgical neck and a strut graft (10 cm in length) was inserted into the fracture region to lift the head superiorly. Each specimen was statically tested at a rate of 5 mm/min until failure. To build the finite element (FE) model, 64-slices CT images were converted to create a 3D solid model. The material properties of screws and plates were modeled as isotropic and linear elastic, with an elastic modulus of 110 GPa, (Poisson's ratio, n=0.3). The Young's moduli of cortical and cancellous bones were 17 GPa and 500 MPa (n=0.4), respectively. Three alter shifting toward far cortex by 1, 2, and 3 mm in humeral canal were installed in the simulating model.Introduction
Materials and methods
Distal femur fracture is a critical issue in orthopedic trauma, because it is difficult to manage especially in cases with intra-articular fracture. Osteoporosis may cause instability of implant and increase complications. Few studies investigate on the stability of distal femur osteoporotic fracture and the behaviors under cycling. Our hypothesis was that the stiffness of construct would decrease as cycling in osteoporotic bone. Seven cadaver specimens were used in this study. Relative bone density for each specimen was evaluated using CT scanning by three known calibration phantoms scanned simultaneously with the specimen. All cadaver specimens were divided normal (group 1) and osteoporosis (group 2) in accordance with the bone density. The titanium distal femur locking plates with 6 screws placed in distal femur condyle and 4 in shaft. A 10 mm gap with 65 mm proximal to the center of articular surface and a vertical fractural line between intra-articular were created to simulate AO C2 type fracture. Each specimen was cyclically loaded in two-phase at a frequency of 2 Hz. Phase 1 was set at 1000 N for 10000 cycles. In phase 2, the load was set at 2000 N for 10000 cycles. Then, the specimen was loaded up to failure at a rate of 5 mm/min. Stiffness was evaluated from the linear portion of load-displacement curve at 2000 cycle interval.Introduction
Materials and Methods
In patients with traumatic brain injury and fractures
of long bones, it is often clinically observed that the rate of bone
healing and extent of callus formation are increased. However, the
evidence has been unconvincing and an association between such an
injury and enhanced fracture healing remains unclear. We performed
a retrospective cohort study of 74 young adult patients with a mean
age of 24.2 years (16 to 40) who sustained a femoral shaft fracture
(AO/OTA type 32A or 32B) with or without a brain injury. All the
fractures were treated with closed intramedullary nailing. The main
outcome measures included the time required for bridging callus
formation (BCF) and the mean callus thickness (MCT) at the final
follow-up. Comparative analyses were made between the 20 patients
with a brain injury and the 54 without brain injury. Subgroup comparisons
were performed among the patients with a brain injury in terms of
the severity of head injury, the types of intracranial haemorrhage
and gender. Patients with a brain injury had an earlier appearance
of BCF
(p <
0.001) and a greater final MCT value (p <
0.001) than
those without. There were no significant differences with respect
to the time required for BCF and final MCT values in terms of the
severity of head injury (p = 0.521 and p = 0.153, respectively),
the types of intracranial haemorrhage (p = 0.308 and p = 0.189,
respectively) and gender (p = 0.383 and
p = 0.662, respectively). These results confirm that an injury to the brain may be associated
with accelerated fracture healing and enhanced callus formation.
However, the severity of the injury to the brain, the type of intracranial
haemorrhage and gender were not statistically significant factors
in predicting the rate of bone healing and extent of final callus formation.